AUTUMN BROOK SUBDIVISION
INITIAL STUDY AND MITIGATED NEGATIVE DECLARATION

SEPTEMBER 2015

PREPARED FOR:
City of Concord Civic Center
1950 Parkside Drive, MS/07
Concord, CA 94519
(925) 671-3219

PREPARED BY:
Analytical Environmental Services
1801 7th Street, Suite 100
Sacramento, CA 95811
(916) 447-3479
www.analyticalcorp.com
Table of Contents

SECTION 1.0 – INTRODUCTION .. 1-1
 1.1 Purpose of Study ... 1-3
 1.2 Environmental Factors Potentially Affected ... 1-3
 1.3 Significance Determination ... 1-4

SECTION 2.0 – PROJECT DESCRIPTION... 2-1
 2.1 Location and Existing Setting .. 2-1
 2.2 Project Description .. 2-6
 2.3 Background ... 2-20
 2.4 Regulatory Requirements, Permits, and Approvals ... 2-22

SECTION 3.0 – ENVIRONMENTAL CHECKLIST ...3-1
 3.1 Aesthetics .. 3-1
 3.2 Agriculture and Forestry Resources .. 3-4
 3.3 Air Quality ... 3-7
 3.4 Biological Resources .. 3-11
 3.5 Cultural Resources ... 3-17
 3.7 Greenhouse Gas Emissions ... 3-28
 3.8 Hazards and Hazardous Materials ... 3-30
 3.9 Hydrology and Water Quality ... 3-35
 3.10 Land Use and Planning ... 3-40
 3.11 Mineral Resources ... 3-43
 3.12 Noise .. 3-44
 3.13 Population and Housing ... 3-49
 3.14 Public Services .. 3-50
 3.15 Recreation .. 3-52
 3.16 Transportation and Circulation .. 3-53
 3.17 Utilities and Service Systems .. 3-56
 3.18 Mandatory Findings of Significance ... 3-59

SECTION 4.0 – PREPARERS ...4-1

SECTION 5.0 – REFERENCES CITED ...5-1

FIGURES

- Figure 1: Regional Location .. 2-2
- Figure 2: Site and Vicinity .. 2-3
- Figure 3: Aerial Photograph ... 2-4
- Figure 4: Proposed Rendition ... 2-7
- Figure 5: Proposed Site Plan ... 2-8
- Figure 6: Noise Monitoring Sites ... 3-45

LIST OF TABLES

- Table 1: Development Standards ... 2-9
- Table 2: Permanent and Operational Source Control Measures 2-14
- Table 3: Water Management Plan ... 2-18
- Table 4: Summary of 15-Minute Noise Level Measurements 3-46
- Table 5: Nearby Schools .. 3-51
LIST OF APPENDICES
Appendix A - Tree Preservation Report
Appendix B - Design Plans
Appendix C - Stormwater Control Plan
Appendix D - Geotechnical Survey
Appendix E - Trust Resource Report
Appendix F - Historic Records Search-Confidential
Appendix G - Screening Criteria Table 3-1
Appendix H - FEMA Mapping
Appendix I - ENGEO Report
SECTION 1.0 – INTRODUCTION

The proposed Autumn Brook Subdivision Project is a project as defined under the California Environmental Quality Act (CEQA). This Initial Study (IS) was prepared by Analytical Environmental Services for the City of Concord (City), Community and Economic Development Department, Planning Division. This IS was prepared pursuant to California Environmental Quality Act of 1970, Public Resources Code § 21000, et seq., as amended and implementing State CEQA Guidelines, Title 14, Chapter 3 of the California Code of Regulations (collectively, CEQA).

1. **Project Title:** Autumn Brook Subdivision

2. **Lead Agency Name and Address:**
 - City of Concord
 - 1950 Parkside Drive
 - Concord, CA 94519

3. **Contact Person and Phone Number:**
 - Ryan Lenhardt, Senior Planner
 - (925) 671-3162

4. **Project Location:**
 - 1890 Risdon Road, Concord, CA 94518

5. **Project Sponsor’s/Applicant’s Name and Address:**
 - Zheng Tan
 - 1233 Pine Creek Way, Unit A
 - Concord, CA 94520-3642

6. **General Plan Land Use Designation:** LDR (Low Density Residential)

7. **Zoning:**
 - RS-7 (Residential Single-Family, 7,000 square foot minimum lot size)

8. **Surrounding Land Uses and Setting:**
 - Residential and urban development and supporting infrastructure

9. **Description of Project:**
 - Development of eight lots ranging in size from 3,653 to 6,779 net square feet at the subject site and the construction of eight Craftsman-style single-family detached homes range from 2,612 to 3,043 square feet in size.

10. **Project Entitlements:**
 - Approval of Tentative Map Subdivision, Re-Zoning, Design Review, Stormwater Control Plan, Tree Removal, and Minor Exception.

Date Initial Study Completed: September 2015
1.1 PURPOSE OF STUDY

This IS examines the potential effects on the environment of the City of Concord’s (City’s) potential approval of a Tentative Map Subdivision, Re-Zoning, Design Review, Stormwater Control Plan, Tree Removal, and Minor Exception for development of 8 residential lots ranging in size from 3,653 to 6,779 net square feet at 1890 Risdon Road (Proposed Project). This IS was prepared pursuant to CEQA.

This IS has identified potentially significant impacts and mitigation measures, which, when incorporated into the project, will reduce these impacts to less than significant levels. Therefore, this IS would support a Mitigated Negative Declaration under CEQA Guidelines Section 15070.

This IS is organized into the following sections:

Section 1.0 - Introduction: Provides an overview of the Proposed Project, location, sponsor, when the IS was completed, environmental resources potentially affected by the Proposed Project, and the significance determination of the Proposed Project on the environment by the lead agency.

Section 2.0 - Project Description: Includes project a detailed description of the Proposed Project and background information.

Section 3.0 - Environmental Checklist and Discussion: Contains the Environmental Checklist form together with a discussion of the environmental issues. Mitigation measures, if necessary, are noted, following each impact discussion. The numbering sequence for each of the mitigation measures is related to their associated topical sections.

Section 4.0 - List of Preparers

Section 5.0 - Bibliography

1.2 ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED

The environmental factors checked below could be potentially affected by the Proposed Project, involving at least one impact requiring mitigation to bring it to a less-than-significant level. Impacts to these resources are evaluated using the checklist included in Section 3.0. The Proposed Project was determined to have a less-than-significant impact or no impact, even without mitigation, on unchecked resource areas.
1.3 SIGNIFICANCE DETERMINATION

On the basis of the environmental evaluation presented in Section 3.0:

☐ I find that the Proposed Project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.

☒ I find that although the Proposed Project could have a significant effect on the environment, there will not be a significant effect in this case because revisions to the project design and project-specific mitigation measures described in Section 3.0 have been agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION is recommended to be adopted.

☐ I find that the Proposed Project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

__ ____________________________
Signature Date

__
City of Concord

Printed Name Lead Agency
SECTION 2.0 – PROJECT DESCRIPTION

2.1 LOCATION AND EXISTING SETTING

The project site is located within the limits of the City of Concord (City) in Contra Costa County (Figure 1). The 2.02-acre project site (Assessor Parcel Number [APN] 147-350-003) is located at 1890 Risdon Road in the southern part of the City, approximately 2 miles east of Highway 680 (Figure 2). The project site is bordered on the north by Risdon Road and on all other sides by low density residential development. Holiday Court and David Avenue are west and south of the project site. Approximately 240 feet south of the project site, Bay Area Rapid Transit’s (BART’s) Pittsburg/Bay Point line runs northeast to southwest, with the nearest crossing located at Oak Grove Road approximately 0.25 miles to the southeast of the project site. The project site is currently vacant with the exception of an unoccupied single-family residence at the northern end of the property. A flood control channel and associated easement maintained by the Contra Costa County Flood Control District (CCCFCD) traverses the eastern portion of the project site. Approximately 42 trees have been inventoried on the project site, including 21 Valley Oaks (Appendix A). The tree inventory is further discussed in Section 3.0 under Biological Resources.

2.1.1 ZONING

The project site is zoned RS-7. The Residential Single-Family (RS) zoning district is applied to areas of the City designated for single-family residential uses in neighborhoods at densities of 2.5 to 10 units per acre. The specific allowable density for each parcel is identified by the number following the zoning identifier and corresponds to the minimum lot size. Accordingly, the project site is zoned for single-family residential units with a minimum lot size of 7,000 square feet. The RS district is consistent with and implements the low density residential (LDR) land use designation of the Concord 2030 General Plan (General Plan). Under the General Plan, the project site is designated for LDR land use.

2.1.2 EXISTING LAND USES

Currently, the project site consists of mainly open space with an unoccupied 1952 residence that is in disrepair, a small storage shed which is not in use, and a small fence around the residence (Figure 3). A 72-foot CCCFCD easement traverses the eastern edge of the project site and includes an excavated flood control channel and a 22-foot wide unpaved service road along the western bank of the canal.

A non-exclusive 20-foot roadway and utility easement centered on the southwest property line was created in 1950 to provide access to large parcels in the area. A 10 foot portion of the easement is on the project site and a 10 foot portion is on the adjacent neighbors’ properties. Since that time, the land in the area has been subdivided and David Avenue, BART, Minert Road, Holiday Court, and Risdon Road were improved with public utilities. These streets surrounding the project site provide public access and public utilities to the project site and all neighboring lots. The applicant has informed the City that the easement is no longer necessary to provide access to the neighborhood, that the easement is no longer in use, and that two of
Figure 1
Regional Location

SOURCE: ESRI Data, 2015; AES, 4/24/2015
Figure 2
Site and Vicinity

SOURCE: “Walnut Creek, CA” USGS 7.5 Minute Topographic Quadrangle, T1N, R1W, Unsectioned Area of Walnut Creek, Mt. Diablo Baseline & Meridian; ESRI Data, 2015; AES, 4/24/2015
SOURCE: DigitalGlobe aerial photograph, 6/9/2014; AES, 5/7/2015

Figure 3
Aerial Photograph
the adjacent neighbors have built a home addition and a swimming pool over their side of this easement. Accordingly, the applicant intends to pursue a quit claim of quiet title action to abandon the easement.

2.1.3 SURROUNDING LAND USES

The project site is surrounded by residential development and associated infrastructure. All surrounding residences are single-family homes located within a subdivision. There are seven homes to the southwest of the project site, two homes to the south, two homes to the southeast, three homes to the northeast, and three homes to the north (across Risdon Road). The nearest school is Oak Grove Middle School, approximately 680 feet southwest of the project site, across the BART tracks. The nearest public gathering place is Fair Oaks Church on Risdon Road approximately 225 feet east of the project site. The nearest public park is Ygnacio Valley Park, approximately 0.22 miles east of the project site, adjacent to Oak Grove Road.

2.1.4 TRANSPORTATION AND CIRCULATION

The project site is bounded on the north by a narrowed portion of Risdon Road. Heading west away from Ygnacio Valley Park, Risdon Road abruptly narrows as the sidewalk ends just before the project site on the northern side of the roadway. No sidewalks or street parking is provided on the southern side of the roadway for approximately 720 feet. Approximately 240 feet west of the intersection with Woodmoor Drive, Risdon Road widens, providing a sidewalk and street parking on the southern side of the roadway. Risdon Road then connects to Oak Grove Road approximately 0.20 miles to the east of the project site. Risdon Road connects with multiple residential streets southward, such as Holiday Court and Woodmoor Drive, before ending approximately 0.3 miles west of the project site at the intersection with Estrella Court. Regional access to the project site is provided via Monument Boulevard to the north and Treat Boulevard to the south of the project site. Both provide access from State Route (SR) 242/Interstate 680 to Oak Grove Avenue, hence Risdon Road and the project site. The Pittsburg/Bay Point BART line provides access from Pittsburg in the East Bay to Millbrae in the southern portion of the San Francisco Peninsula in San Mateo County. Additional discussion of the surrounding transportation network is provided in Section 3.0 under Transportation and Circulation.

2.1.5 DRAINAGE

Excluding the existing CCCFCD flood control channel, there are no off-site areas draining onto the project site. The site drains by overland flow either to the existing flood control canal or to the existing drainage ditch along the southeast side of Risdon Road. The existing impervious area on the site, which consists of an existing residential structure, gazebo, fence, and shed, covers an area of approximately 2,700 square feet and is shown on Figure 3.

2.1.6 INFRASTRUCTURE/UTILITIES

Existing utility lines to the unoccupied residence are located on the north end of the project site approximately 20 feet from the entrance to the property. A 50-foot long driveway provides access to the existing home from Risdon Road. A well is located approximately 90 feet south of the existing residence, approximately 40 feet east of the western project boundary. Along the eastern edge of the project site, a 72-foot CCCFCD easement traverses the length of the project.
site and includes the excavated channel and a 22-foot wide unpaved service road adjoining the western bank of the canal. The flood channel is discussed in more detail in Section 3.9.1 under **Flooding.** Along the western edge of the project site, a 10-foot road and utility easement traverses the length of the project site. Potable water is supplied by the Contra Costa Water District (CCWD), Water Zone 2. Sewerage conveyance is provided by the City Public Works Department, with treatment provided at the Central Contra Costa Sanitary District Treatment Plant in Martinez, California. Gas and electrical services are provided by Pacific Gas and Electric (PG&E). Electrical and telephone are provided via overhead lines.

2.2 PROJECT DESCRIPTION

The applicant proposes to subdivide the 2.02-acre project site creating 8 lots ranging in size from 3,653 to 6,779 net square feet. The subdivided lots would support development of eight Craftsman-style single-family detached homes ranging from 2,612 to 3,043 square feet in size. A rendition of the project is provided as Figure 4. Six different floor plans are proposed, each of which includes a two-car garage with each floor plan having different elevations. All proposed homes would be two-story, with the tallest floor plan option at approximately 29 feet in height. Approximately 0.87 acres of the project site would be developed with impervious surfaces (homes, driveways, private roadway, and sidewalk), while the remaining 1.15 acres would be kept pervious and include landscaping, a bioswale area, and the existing easement for the county to access the flood control channel; depicted in the proposed site plan (Figure 5).

Because the project site is zoned RS-7, which requires a minimum 7,000-square-foot lot area, the project applicant is seeking the approval of a Tentative Map Subdivision, Re-Zoning, Design Review, Stormwater Control Plan, Tree Removal, and Minor Exception. The Proposed Project is consistent with the vision for growth and development detailed in the 2030 Contra Costa County General Plan.

2.2.1 LAND USE

The Applicant is pursuing approval of the proposed small lot subdivision, which is within the densities prescribed by the 2030 General Plan, but at a density higher than currently allowed under the existing RS-7 zoning designations. The Applicant is therefore requesting a zoning change from RS-7 to Residential Low Density (RL). The RL District is applied to areas of the City appropriate for low density residential uses in a neighborhood with predominately detached single-family dwellings, but allows a diversity of compatible housing types and lot sizes from larger lot single-family dwellings to cottages, cluster, courtyard, and patio homes, and duplexes, at densities of 2.5 to 10 units per net acre. The RL District is consistent with and implements the Low Density Residential (LDR) land use designation of the General Plan. The Applicant would be required to adhere to the following RL development standards found in Table 18.30.040 of the City of Concord Development Code (codified as Chapter 18 of the City of Concord Municipal Code and referred to herein as the Development Code):
Figure 5
Proposed Site Plan

Legend:
- Project Boundary

City of Concord Autumn Brook Initial Study / 215507
TABLE 1
DEVELOPMENT STANDARDS

<table>
<thead>
<tr>
<th>Standards</th>
<th>RL Requirements</th>
<th>Additional Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (du/net acre)</td>
<td>min/max 2.5 – 10</td>
<td></td>
</tr>
<tr>
<td>Lot Area (square feet)</td>
<td>min 1,920</td>
<td></td>
</tr>
<tr>
<td>Lot Width (feet)</td>
<td>min 24</td>
<td></td>
</tr>
<tr>
<td>Lot Depth (feet)</td>
<td>min 80</td>
<td></td>
</tr>
<tr>
<td>Lot Coverage (percent)</td>
<td>max 50</td>
<td></td>
</tr>
<tr>
<td>Building Height</td>
<td>max 2.5 stories or max. 30 ft.</td>
<td>Additional height may be approved with a use permit.</td>
</tr>
<tr>
<td>Setbacks (feet)<sup>(2)</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front, minimum</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Interior Side, minimum</td>
<td>5</td>
<td>Additional setback standards may apply in small lot subdivisions pursuant to Chapter 18.155 CDC.</td>
</tr>
<tr>
<td>Corner Side, minimum</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Rear, minimum</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Garage, Street Access</td>
<td>20</td>
<td>Note: Minimum five feet behind primary building facade.</td>
</tr>
<tr>
<td>Garage, Alley Access, minimum</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Open space/unit (square feet)</td>
<td>min 200<sup>(1)</sup></td>
<td>See CDC 18.150.100, Open space and recreational facilities for residential developments, and Chapter 18.155 CDC for small lot subdivisions</td>
</tr>
</tbody>
</table>

⁽¹⁾ Additional requirements may apply pursuant to Chapter 18.155 CDC (Standards for Small Lot and Medium Density Development) and Division V of this title (Standards for Specific Uses).

⁽²⁾ Unless otherwise approved through a planned unit development (PUD).

[Ord. 12-4. DC 2012 § 122-80].
Under a conventional rezoning application, the development proposal would be reviewed by the Planning Commission at a public hearing for recommendation to the City Council at a public hearing. The Planning Commission would be a recommending body only, and the City Council would be the decision-making body. In addition, the rezoning may only be approved if all of the following applicable findings are made:

1. The proposed amendment is consistent with the general plan;
2. The proposed amendment would not be detrimental to the public interest, health, safety, convenience, or welfare of the city; and
3. Zoning map amendments shall also find that the affected site is physically suitable, including absence of physical constraints, access, compatibility with adjoining land uses, and provision of utilities, for the requested zoning designation and proposed or anticipated uses and/or development.

ADDITIONAL ACTIONS

The applicant must obtain the Planning Commission’s recommendation and approval of each of the applications by the City Council. The Applicant received Design Review recommendation of approval on November 20, 2014 with a vote of 5-0 with the following conditions:

1. Final landscape plan to include wall detail within site visibility triangle, street sign detail, street trees along Risdon Road; and 36-inch box size for at least 50 percent of the proposed replacement trees; and
2. Home elevations to reflect additional gable and centered window on the left elevation of Plan 3A.

For tentative subdivision maps, the Planning Commission is required to approve, conditionally approve, or deny the tentative subdivision map within 50 days after certification of an environmental impact report, adoption of a negative declaration, or a determination by the city that the project is exempt from the requirements of CEQA. In accordance with the Municipal Code (17.15.060), a tentative subdivision map may be approved or conditionally approved only if the Planning Commission finds that the proposed tentative subdivision map, together with the provisions for its design and improvement, is consistent with the General Plan, any applicable specific plan, the Zoning Ordinance, and other applicable provisions of the Municipal Code.

EASEMENTS

The existing 72-foot CCCFCD easement along the eastern portion of the project site would remain under the Proposed Project. A buffer feature discussed below under *Drainage* has been included in the project site plans to ensure development does not conflict with the use of the easement.

It is in the intent of the applicant to pursue a quit claim or quiet title action to abandon the existing non-exclusive 20-foot roadway and utility easement located along the eastern property...
boundary. The easement is no longer in use and two of the adjacent neighbors have built a home addition and a swimming pool over this easement on their side.

2.2.2 SITE ACCESS/CIRCULATION

Risdon Road would be widened and improved by continuation of the sidewalk west of the project site along the project's frontage. Approximately 1,050 square feet of the frontage of the project site would be dedicated to the City for right-of-way purposes. The widening of Risdon Road would provide 4 public parking spaces. The Proposed Project would include the construction of an access lane proposed to be named “Autumn Brook Lane,” which will connect all eight residences to Risdon Road. The private roadway would be designed and constructed in accordance with City Engineer requirements. No connection would be provided to David Avenue based on the design of the subdivision. The private lane would be approximately 28 feet wide and include 8 full size (8 feet by 22 feet) guest parking spaces. The lane design includes a turnout meeting the CCCFPD’s needs for vehicle access and maneuverability. The proposed road within the subdivision would be private and maintained by a Homeowner’s Association (HOA).

2.2.3 DRAINAGE

In February 2003, the California Regional Water Quality Control Boards for the San Francisco Bay Region and the Central Valley Region revised Provision "C.3" in the NPDES permit governing storm water discharges in the City. Accordingly, prior to issuance of permits for building, site improvements, or landscaping, applicants must submit a permit application consistent with the applicant’s approved Stormwater Control Plan, and include drawings and specifications necessary for construction of site design features, measures to limit directly connected impervious area, pervious pavements, self-retaining areas, treatment BMPs, permanent source control BMPs, and other features that control stormwater flow and potential stormwater pollutants. The project drainage scheme has been designed to conform to the stormwater quality requirements of the City Design Review Application Checklist (Application Checklist) and the Contra Costa County Clean Water Program’s Stormwater C.3. Guidebook (C.3 Guidebook). The stormwater design plan and engineered features are presented on Sheet 18 of Appendix B. The total amount of impervious area (buildings and all other hardscape surfaces) created and replaced as a result of the Proposed Project would be 36,373 square feet, or 0.83 acres. Accordingly, a Stormwater Control Plan was developed by the Applicant in accordance with the Application Checklist and is included as Appendix C.

According to the C.3. Guidebook, the Proposed Project falls within the threshold of Group 2 (greater than 10,000 Square Feet to less than 1 Acre) for replacement or creation of new impervious surfaces as shown on Table 1-1 in the C.3 Guidebook. Therefore, Treatment and Source Control Measures for stormwater runoff are required, while a Hydromodification Plan (HMP) or flow control is not applicable to the Proposed Project.

The project site is relatively flat and the runoff generated by the new development (excluding the flood control channel area) would require treatment. The drainage improvements include a conventional storm drain system with retention and water quality improvement features. The
storm drainage improvements for the project are designed to convey 10-year storm drainage flows through the project site as well as to provide overland release for up to a 100-year storm. These drainage facilities are designed to prevent interference with the operation of the water quality improvement measures described below. Preliminary sizing calculations were conducted using the modified rational method and flood routing techniques to ensure that adequate open space was incorporated into the site plan to ensure stormwater conveyance and treatment features function according to C.3 Guidebook requirements. The primary stormwater facility proposed for the project design is a bioswale for treatment of the runoff generated by the development (excluding the CCCFCD facilities). The proposed on-site stormwater facilities incorporate sub-drains and overflow outlet piping to insure positive drainage from the site. The ultimate outlet for both storm drainage and water quality treatment is the existing 33-inch diameter City storm drainage line that is located just to the northwest of the site within Risdon Road.

To facilitate stormwater facility designs, the site was divided into five Drainage Management Areas (DMAs). Disposal of runoff via deep infiltration was determined by a Geotechnical Survey attached as Appendix D to not be feasible due to the low permeability of the clay soils. As an alternative to infiltration, the bioswale would be developed along the eastern edge of the development site and would also act as a buffer between the proposed Autumn Brook Lane and residential development and the CCCFCD right-of-way and flood channel. The bioswale would cover an area of approximately 1,950 square feet and reduce stormwater flow velocities during low flow events. The bioswale would outlet into an on-site storm drain located at the northwest side of the bioswale which would discharge into the City’s existing 33-inch storm drain along Risdon Road. The bioswale is designed to treat the low flows from the project site in accordance with the C.3 Guidebook and to pass through higher storm flows that do not require treatment into the storm drain line. The bioswale would be easily accessible for inspection and maintenance activities.

Runoff from roofs, parking stalls, driveways, pavement areas as well as lawn areas from each DMA will be collected via a closed conduit drainage system and drained to the bioswale. Runoff from roofs will have gutters which will drain to downspouts. The downspouts will discharge to splash blocks at each downspout location. The splash blocks located to the northeast of the high points at the rear corner of the buildings will surface drain toward and across the access road, across the sidewalk, through the concrete curb and gutter with 24-inch openings every ten feet and into the bioswale before discharging off-site via the on-site drain connecting to the City’s 33-inch stormwater line within Risdon Road.

Additional stormwater improvements include removal of the 15-inch and 18-inch stormwater lines located within the existing frontage of the property to allow widening of Risdon Road. In place of the two drains, the Applicant would install a new 12-inch line that would connect to the existing 12-inch stormwater drain located along the southern portion of Risdon Road as it passes the western boundary of the project site. The 12-inch connection would run along the dedicated right-of-way along the gutter of the new sidewalks, discharging into a drain line connecting the bioswale to the 33-inch City stormwater line. A storm drain would also be
installed within the gutter at the connection of the 12-inch line with the line draining the bioswale.

STORMWATER QUALITY

The bioswale would serve to not only reduce and convey flows to the City’s stormwater system, but also treat stormwater runoff in accordance with the C.3 Guidebook. The vegetation within the bioswales would filter suspended sediments from the water passing through them. While the plants remove these large particles, microbes in the soil digest organic nutrients which in high concentrations can be considered pollutants.

Source control measures would be included within the project design and when homeowners occupy the residences. Source controls include the prevention of, or limitation of, pollutants being released into surface water as a result of stormwater runoff. This is the preferred method of pollution control since it is aimed at keeping pollutants out of the stormwater. The following table demonstrates that both types of source control measures have been considered to the maximum extent practicable.

<table>
<thead>
<tr>
<th>Potential Source</th>
<th>Permanent BMPs</th>
<th>Operational BMPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor and structural pest control</td>
<td></td>
<td>Provide Integrated Pest Management (IPM) information to homeowners, lessees and operators</td>
</tr>
</tbody>
</table>
| Landscape and outdoor pesticides, herbicides, rodenticides, fungicides and fertilizers | Final Landscape Plans will:
1) Minimize irrigation and runoff and promote infiltration where appropriate
2) Minimize use of fertilizers and pesticides
3) Use pest-resistant plants, especially adjacent to hardscape when possible
4) Use plantings appropriate for the site soils, slopes, climate, sun, wind, land use, ecological consistency and plant interactions | Landscape will be maintained using minimum or no pesticides
Landscape will be maintained using minimum fertilizer application especially adjacent to hardscape
IPM information will be provided to homeowners and lessees |
| Vehicle washing | | Stormwater pollution prevention information will be distributed to homeowners and lessees |
Potential Source

<table>
<thead>
<tr>
<th>Potential Source</th>
<th>Permanent BMPs</th>
<th>Operational BMPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Site drain Inlets</td>
<td>Stencil the storm drain inlets at the bioretention pond with “No Dumping, Drains to Creek” using thermoplastic tape</td>
<td></td>
</tr>
<tr>
<td>Interior floor drains</td>
<td>Interior floor drains will be plumbed to sanitary</td>
<td></td>
</tr>
<tr>
<td>Need for future indoor and structural pest control</td>
<td>Obtain a letter from the Project Architect regarding the type of pest control that will be required for the type of building construction on the site.</td>
<td></td>
</tr>
</tbody>
</table>

STORMWATER FACILITY MAINTENANCE

The proposed stormwater facilities remove pollutants primarily by filtering runoff slowly through an active layer of soil. Routine maintenance is needed to ensure that flow is unobstructed, that erosion is prevented, and that plant roots hold soils together and are biologically active. The detailed maintenance requirements for the proposed stormwater facility will be presented in an Operations and Maintenance Plan and Schedule which will be submitted to the City with the application for building permits, which will include, at a minimum, the general maintenance requirements listed below.

1. Inspect inlets for channels, exposure of soils, or other evidence of erosion. Clear any obstructions and remove any accumulation of sediment. Examine rock or other material used as a splash pad and replenish if necessary.

2. Inspect outlets for erosion or plugging.

3. Inspect side slopes for evidence of instability or erosion and correct as necessary.

4. Observe soil at the bottom of the swale or filter for uniform percolation throughout. If portions of the swale or filter do not drain within 48 hours after the end of a storm, the soil should be tilled and replanted. Remove any debris or accumulations of sediment promptly.

5. Examine the vegetation to ensure that it is healthy and dense enough to provide filtering and to protect soils from erosion. Replenish mulch as necessary, remove fallen leaves and debris, prune large shrubs or trees, and mow turf areas. When mowing, remove no more than 1/3 height of grasses. Confirm that irrigation is adequate and not excessive (no runoff should occur). Replace dead plants and remove noxious and invasive vegetation.

6. Abate any potential vectors by filling holes in the ground in and around the swales and bioretention and by ensuring that there are no areas where water stands longer than 48 hours following a storm. If mosquito larvae are present and persistent, contact the Contra Costa Mosquito and Vector Control District for information and advice.
Mosquito larvicides should be applied only when absolutely necessary and then only by a licensed individual or contractor.

2.2.4 GRADING

The project site is relatively flat and minimal grading would be required for the development and the proposed road and bioswale located on the east side of the project site. Construction activities would result in a net export of approximately 3,500 cubic yards of excavated soils.

The project site is located on expansive soils as defined in Table 18-1-B of the Uniform Building Code; however, a completed geotechnical survey states that these soils are only in the topsoil and would not impact any infrastructure as special attention would be given during grading, including keeping the exposed soils moist by occasional sprinkling (Appendix D).

2.2.5 LANDSCAPING/LIGHTING

The Proposed Project will provide new landscaping. The preliminary planting palette includes flowering trees such as standard white oleander, red crape myrtle and western redbud and native trees such as coast live oak. As indicated on the preliminary landscape plan (Sheet 19 of Appendix B), shrubs, groundcovers, vines, moss rock boulders, and bioswale area plantings are also proposed.

The Proposed Project requires the removal of protected trees which requires a City permit. The application to remove a Protected Tree requires the information be submitted to the Public Works Parks Division for review and response. Only protected trees require a permit prior to removal and there is currently no fee associated with a single permit. Non-protected trees do not require a City issued permit prior to removal.

1. A letter of intent from the property owner:
 a. A plan showing the location of the tree(s) to be removed and the quantity and species of trees to be planted in exchange for the protected tree; and
 b. Statement of specific reasons for the proposed removal

2. Arborist report including the following for each tree:
 a. A written narrative from an I.S.A. Certified Arborist
 b. Arborist Name, Certification # and company letterhead
 c. Species (common and scientific name)
 d. Size (diameter, height, crown spread)
 e. Condition of the tree (foliage, vigor, structural integrity, etc.)
 f. Prognosis
 g. Life expectancy
 h. Location diagram (and photos, if desired)
As shown on the Tree Exhibit and Demolition Plan, included as Sheet 8 of Appendix B, most trees within the drainage channel easement would be preserved while several protected trees along Risdon Road and in the northwest portion of the site are slated for removal. Most of the protected trees along the western property line would also be retained providing additional privacy and screening for the adjacent existing single-family homes. In accordance with permit requirements, a Tree Preservation Report is included as Appendix A. Typical Proposed Project fencing is shown on the landscape cross-sections (Sheet 20 of Appendix B) and consists of a combination of six-foot tall good-neighbor fences, 7.5-foot tall rear yard privacy fences, and 3.5-foot tall black tubular steel fencing along the proposed bioswale area.

The Proposed Project would have a rear (west) and side (south) 7.5-foot high wood privacy fence with decorative lattice, and on the side of the proposed housing developments, there would be a five-foot wide landscaped planter strip bordering the fence which would be planted with fast growing evergreen screen shrubs such as pacific wax myrtle, oleander, and toyon.

The proposed lighting plan would include four street lamps placed in front of/between each of the developed residences on the opposite side of Autumn Brook Lane. The street lamps would be consistent with the City standard height and are compatible with existing street lights in the vicinity. All street lamps located on Autumn Brook Lane would be connected to new utility lines and would be fitted with a cast aluminum base with a height of 32 inches and width of 15.5 inches. Light sources on the project site from the Proposed Project would also include light from the residences themselves at 34 total locations (east, north, south) that could potentially be seen from Risdon Road, neighbors to the west (although most would be blocked by the proposed landscaping and existing and replacement trees [50 percent of replacement trees are required to be 36-inch box trees] including the 7.5-foot privacy fence that would be constructed), and neighbors to the southwest and east. Lighting would be consistent with the surrounding residential neighborhoods.

2.2.6 INFRASTRUCTURE/UTILITIES

ELECTRICAL

According to Section 13.10.130 of the City Municipal Code, all utility facilities installed within public rights-of-way and on private property shall be installed and maintained underground unless the following apply:

1. Such lot is not contiguous to a property having underground facilities,
2. More than 50 percent of the street frontage within the block has aboveground facility service connections, and
3. The lots are less than 5,000 square feet in area and the floor area of the structures being constructed are less than 2,500 square feet.

Special exemptions to the undergrounding requirement may be granted by the City Council in cases where such undergrounding cannot be accomplished feasibly within the applicable safety regulations and other laws applying to the installation or in cases of unnecessary or unusual hardship. The Applicant proposes to install two power-line poles, both on the north side of the
project site adjacent to Risdon Road, providing a continuation of the existing overhead utility lines that run along the entire 0.54 mile length of Risdon Road. One power-line pole with overhead lines would be constructed near the corner of Autumn Brook Lane and Risdon Road on the east corner approximately 30 feet set back from the corner. The second power-line pole with overhead lines would be constructed near the first proposed house on the western corner of Autumn Brook Lane and Risdon Road approximately 30 feet set back from the corner. The remaining utilities would be undergrounded in accordance with Section 13.10.130 of the City Municipal Code. Joint trenching for utility lines would be developed along the edge of the proposed housing lawns for the entire length of Autumn Brook Lane and would connect to each housing unit on either the northeast or southeast corner of each, as well as connecting all four proposed street lamps on the eastern side of Autumn Brook Lane (Sheet 15 of Appendix B). A proposed electrical transformer would be located in front of housing units #4 and #5.

For the continuation of the overhead utility lines along Risdon Road, the Proposed Project meets exemption conditions 1 and 2 of Section 13.10.130 of the City Municipal Code. However, the proposed lot sizes and floor areas would exceed the maximum criteria established under Condition 3. Therefore, the Applicant would request a special exemption from the City Council due to the unnecessary hardship that would result from undergrounding of the utilities along Risdon Road, preventing the ability to widen Risdon Road and construct sidewalks along the project's frontage.

The proposed sanitary sewer lines would be installed under Autumn Brook Lane approximately 20 feet west of the eastern curb and approximately 40 feet east of the proposed housing units. All housing units would be connected to the sanitary sewer system by underground piping. Clean outs would be located approximately 20 feet from each proposed housing unit.

POTABLE WATER

Potable water lines would be installed under Autumn Brook Lane on the eastern half nearest to the proposed housing units. All water lines would be parallel to the sanitary sewer lines in a separate trench. A proposed fire hydrant would be located on the west side of Autumn Brook Lane between the proposed housing units of #3 and #4 and would be connected to the proposed water lines.

The CCWD has a preliminary Water Management Plan for single-family residences in the county to implement a 25 percent reduction in residential water use in accordance with Executive Order B-29-15, which requires the State Water Resources Control Board to impose restrictions to achieve a statewide 25 percent reduction in potable urban water use. These water management practices will be implemented in the final design of the Proposed Project and are listed and detailed in Table 3.
TABLE 3
WATER MANAGEMENT PLAN

<table>
<thead>
<tr>
<th>Activity</th>
<th>BMPs</th>
<th>Design Features</th>
</tr>
</thead>
</table>
| Landscape and outdoor irrigation | 1) No watering of outdoor landscapes in a manner that causes excessive runoff such that water flows onto adjacent property, non-irrigated areas, private and public walkways, roadways, parking lots, or structures.
2) No watering of landscapes during and up to 48 hours after measureable rainfall.
3) No watering of outdoor landscapes more than two days per week or during the daylight hours of 9am-5pm.
4) No watering of landscape of newly constructed homes and buildings that is not delivered by drip or microspray systems. | Use of drought resistant vegetation will be priority along with green space around most of the impervious areas to reduce runoff of any water uses.
All front yard planting areas, including private lane and easements will be irrigated by an automatic sprinkler system utilizing matched, low precipitation heads along with drip irrigation and include an automatic multi-programmable controller equipped with rain sensors and automatic shut off devices. |
| Vehicle and outdoor Structural washing | 1) No washing of vehicles, trailers, boats, or outdoor structures using a hose without a shut off nozzle or within 48 hours of a measureable rainfall event. | C.3 treatment areas located on the opposite side of Autumn Brook Lane will collect all runoff water through the concrete curb and gutter system and filtered through a series of materials to reduce contaminants. |
| Decorative fountains, lakes, ponds | 1) No water shall be used for outdoor non-recirculating decorative fountains or filling of decorative lakes or ponds.
2) Decorative fountains, lakes, and ponds shall not be allowed to run-over and overflow onto the ground at any time. | No decorative non-circulating fountains, lakes, or ponds are part of the final design of the Proposed Project. |

2.2.7 CONSTRUCTION

Project improvements would be construction in one phase and would commence in the summer of 2015. Construction activities would be limited to 7:30 A.M to 6:00 P.M on the weekdays and 8:00 A.M. to 5:00 P.M. on weekends as per the City of Concord Police Department’s Excessive Noise Resource Guide Handout. In addition, construction contractors are required to use power construction equipment with state-of-the-art noise and muffling devices. All internal combustion engines used on the Proposed Project shall be equipped with adequate mufflers and shall be in good mechanical condition to minimize noise created by faulty or poorly maintained engines or other components. Construction contractors are required to locate stationary noise generating equipment as far as possible from sensitive receptors. All construction activities would be conducted in accordance with applicable provisions of the California State Building Code (CBC), the Uniform Building Code (UBC), and applicable City requirements. The following equipment may be utilized during construction of the Proposed Project:
• Tunnel boring machine
• Pavement saw
• Jack hammers
• Excavators
• Front-end loaders
• 10-wheel dump trucks
• Bulldozers
• Water truck
• Paving equipment: back hoe, asphalt hauling trucks, compactors, paving machine, rollers Crane Trench shields
• Air compressors
• Flat-back delivery truck
• Concrete trucks
• Sweepers
• Road grader
• Concrete pumper trucks
• Welding trucks
• Side boom pipe handler tractor
• Earth mover

HAZARDOUS MATERIALS
The Applicant would ensure through the enforcement of contractual obligations that all contractors transport, store, and handle construction-required hazardous materials in a manner consistent with relevant regulations and guidelines. Recommendations would include, but are not limited to, transporting and storing materials in appropriate and approved containers, maintaining required clearances, and handling materials using approved protocols.

ASBESTOS CONTAINING BUILDING MATERIALS

DEMOLITION SURVEY
In accordance with Bay Air Quality Management District (BAAQMD) Regulation 11, Rule 2 Section 303.8, the Applicant would have the existing residence and associated structures thoroughly surveyed for the presence of asbestos-containing material (ACM), including Category I and Category II nonfriable ACM. The survey would be performed by a person who is certified by the Division of Occupational Safety and Health, and who has taken and passed an EPA-approved Building Inspector course and who conforms to the procedures outlined in the course. The survey would include sampling laboratory analysis all suspected asbestos-containing materials. This survey would be made available, upon request by the BAAQMD Air Pollution Control Officer (APCO), prior to the commencement of any ACM removal or any demolition.

DEMOLITION AND REMOVAL OF ACMS
Should the results of the survey indicate the presence of ACMs, the Applicant, through contractual obligations, would ensure compliance with BAAQMD Regulation 11, Rule 2, Section 303. Section 303 outlines the procedures required to remove ACMs, ensure oversight is provided by a qualified professional, and ensure adequate containment is provided to prevent release of asbestos fibers during removal. In addition, waste disposal of ACMs would be accomplished in accordance with BAAQMD Regulation 11, Rule 2, Section 304.

LEAD-BASED PAINT
The Applicant would have the existing residence and associated structures thoroughly surveyed for the presence of lead-based paint by a qualified environmental professional. If lead-based
paint is identified and is loose and peeling, the paint would be removed by a qualified lead abatement contractor. In accordance with U.S. EPA and California Department of Toxic Substances Control (DTSC) requirements, if the paint is securely adhering to the substrate, the entire material would be disposed of as demolition debris, which is a nonhazardous waste. Loose and peeling paint would be disposed of as a State and/or federal hazardous waste, if the concentration of lead exceeds applicable waste thresholds. Hazardous wastes would be appropriately managed, labeled, transported, and disposed of in accordance with local requirements by trained workers, as described above. State and federal construction worker health and safety regulations would require air monitoring and other protective measures be conducted during demolition activities should lead-based paint be present.

2.3 BACKGROUND

2.3.1 CCCFCD COORDINATION

The Applicant has initiated dialogue with the CCCFCD to address concerns regarding the easement on the east side of the property for flood control and maintenance purposes. Even though the CCCFCD holds a 72-foot wide easement, it requested an additional one-foot wide “clear offset buffer” from the easement line to make certain that no aspect of the proposed development would encroach into the existing easement. Additionally, it requested the installation of a (institutional) chain link fence along the easement line at no cost to the District. There has not been a fence along the easement line since the channel was constructed between 1958 and 1968. As requested, a one-foot wide “clear offset buffer” is now a part of the Tentative Map. In addition, the Applicant proposes to construct decorative black aluminum fencing, planted with a softly spreading vine which would be owned and maintained by the HOA (instead of an institutional chain link fence) to separate the CCCFCD channel from the residential development and associated infrastructure.

2.3.2 CITY AND PUBLIC COORDINATION

The Proposed Project and associated design details were formulated through a public and City vetting process than began in 2013. The Applicant’s original site design consisted of a 12 lots on a double loaded private lane in the middle of the site. The Proposed Project was redesigned as a 10 lot plan, then redesigned to a 9 lot plan on a single loaded lane in an effort to address City and County concerns.

As part of the Applicant’s outreach program, a neighborhood meeting was held on April 12, 2014. Individual invitations were mailed to approximately 63 households within 300 feet of the Proposed Project boundary. The meeting and site tour was conducted on a Saturday morning in an effort to maximize neighborhood participation. The nine-lot plan was presented at the first neighborhood meeting. A number of questions, concerns and recommendations were raised by the neighbors as discussed below.

Concerns about the number of lots on the project site resulted in the decrease from nine to eight, resulting in wider lots, improving the architectural elevations, and delineating a two-car garage and driveway apron for each lot. Additional parking spaces, including four overflow/public parking spaces on the south side of Risdon Road, were also added when the
lots were widened. The two-story homes were revised to create predominantly hipped roofs to reduce the building mass and soften the shape of the roofs as viewed from the surrounding neighbors. This also reduced impacts to the existing trees along the west property line with regard to trimming and/or limb removal.

Proposed house sizes would be consistent with surrounding housing to address concerns regarding stable property values for surrounding residences. The sales prices for the Proposed Project houses would be in the range of $700,000 to $825,000. This price range would be consistent with the surrounding residences.

Privacy concerns were addressed by maximizing the preservation of mature trees along the east, west, and south boundary lines to provide screening. In addition, a privacy fence 6 feet high with an additional 1.5-foot decorative lattice, for a total of 7.5 feet, was added to the plans for the perimeter of the project site. A five-foot wide planter strip was added to the final design for additional privacy screening along the new fence.

Neighboring property owners’ concerns about construction-related noise and dust will be addressed through required conditions of approval, existing municipal code, and City required Certificates of Appropriateness such as wetting of disturbed soils during construction and through the installation of privacy fencing to lower the impact of operational noise sources that have been added. Design alterations have also been added to the southern-most house (closest to BART) in order to add protection from the noise. Noise and dust concerns are further discussed in Section 3.0 under Noise.

Safety concerns related to refuse collection cart locations, pedestrians, and vehicles were addressed and incorporated into the design of the final Proposed Project. Refuse collection carts would be conveniently located on the land in front of the new houses and would avoid the use of Risdon road for collection. This will allow the collection carts to be wheeled down the driveway and placed at the curb in front of each house as required by the waste collection company. The Proposed Project frontage improvements include filling in the road, roadside ditches, concrete curbs and gutters, and sidewalk.

To address intermittent noise from BART, located approximately 240 feet south of Lot 8, the construction of a southeast wall of the house on Lot 8 with 2 feet x 6 inches framing, the addition extra insulation, and the installation of triple-pane windows on this wall are proposed. These measures are intended to protect this house and in turn, this house will buffer the noise for the rest of the new houses to the northwest of Lot 8.

On August 25, 2014, the City conducted the first City-sponsored neighborhood meeting. The revised site plan and preliminary architecture were introduced by City staff and presented by the Applicant. A number of comments and questions were posed by the neighbors. The questions were mostly regarding when the construction of the Proposed Project would start and how long the construction would last.

Between August 28, 2014 and April 9, 2015, representatives of the Applicant met with the public at various meetings for review and comments from the public. Tentative Map packages were
submitted and revised while two Incomplete Letters were received. The latest, third, official Tentative Map package was submitted on April 9, 2015 and is presented as the Proposed Project within this IS.

2.4 REGULATORY REQUIREMENTS, PERMITS, AND APPROVALS

As part of the implementation of the Proposed Project, the following permits and approvals may be necessary:

CITY OF CONCORD

The City is the approval authority for the Tentative Subdivision Map and all other applications associated with the Proposed Project (listed below). Pursuant to Development Code Section 18.405.020, if an applicant submits more than one planning permit application for the same project, all applications shall be filed and processed concurrently and each application shall be considered and acted upon by the appropriate review authority. When a single project requires both legislative (e.g. zoning map amendment) and discretionary permit applications (e.g. major subdivision, use permit, variance, design and site review, etc.) or any other discretionary approval where Table 18.400.020 shows more than one review authority, all applications shall be filed, processed, reviewed, and approved or disapproved concurrently by the highest level of authority required for any one application. For example, a project with a zoning map amendment and use permit shall be filed, processed, reviewed, and approved or disapproved by the City Council (after a recommendation from the Planning Commission) where a use permit application by itself may be reviewed and acted upon by the planning commission.

- Adoption of a Mitigated Negative Declaration for the Proposed Project
- Approval of a Tentative Subdivision Map
- Rezone of the project site from RS7 to RL.
- Approval of the Stormwater Control Plan
- Approval of the Tree Removal Plan
- Approval of Minor Exception
SECTION 3.0 – ENVIRONMENTAL CHECKLIST

Pursuant to CEQA Guidelines Section 15063, an IS should provide the lead agency with sufficient information to determine whether to prepare an environmental impact report (EIR), negative declaration (ND), or Mitigated ND (MND) for a proposed project. The CEQA Guidelines state that an IS may identify environmental impacts by use of a checklist, matrix, or other method, provided that conclusions are briefly explained and supported by relevant evidence. If it is determined that a particular physical impact to the environment could occur, then the checklist must indicate whether the impact is Potentially Significant, Less Than Significant with Mitigation, or Less Than Significant. Findings of No Impact for issues that can be demonstrated not to apply to a proposed project do not require further discussion.

This IS was prepared to assess the environmental impacts of the Proposed Project in accordance with CEQA to provide State permitting agencies with sufficient information to determine whether to prepare an EIR, ND or MND for the Proposed Project.

<table>
<thead>
<tr>
<th>Impact Type</th>
<th>Potentially Significant Impact</th>
<th>Less-Than-Significant with Mitigation Incorporation</th>
<th>Less-Than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

3.1 AESTHETICS

Would the project:

a) Have a substantial adverse effect on a scenic vista? ☒ ☒ ☐ ☒

b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway? ☒ ☒ ☒ ☐

c) Substantially degrade the existing visual character or quality of the site and its surroundings? ☒ ☒ ☐ ☐

d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area? ☒ ☒ ☐ ☐

3.1.1 ENVIRONMENTAL SETTING

The project site consists of an unoccupied building, open space with non-native grassland, and several trees (ornamental and native) which blend with the surrounding residential landscaping. The project site is surrounded on three sides by single-story residential structures. All surrounding residential structures face away from the project site, except for the two homes along Risdon Road, which share a side property line with the project site.
CITY PLANNING

In accordance with Municipal Code Section 17.35.120 and to ensure high quality site design, the Planning Division may refer a tentative map to the Design Review Board. In accordance with Development Code Section 18.400, the Design Review Board provides recommendations to the approving body (Planning Commission/City Council under a zoning change and the Planning Commission under a Planned Use Development Permit) regarding elements such as, but not limited to: siting of buildings and project grading, architectural relationship among project buildings and with neighboring properties, layout of streets and driveways, landscaping, walls and fences, and lighting. Accordingly, the Proposed Project was referred to the Design Review Board and at the regular meeting held on December 11, 2014, the Design Review Board recommended approval of the Proposed Project 5-0, including approval of the project setbacks as proposed (refer to Figure 5), with the following items to return as a staff report:

1. Final landscape plan to include wall detail within site visibility triangle, street sign detail, street trees along Risdon Road; and 36-inch box size for at least 50 percent of the proposed replacement trees; and
2. Home elevations to reflect additional gable and centered window on the left elevation of Plan 3A.

Both conditions were included within the updated project plans that comprise the Proposed Project.

3.1.2 IMPACT DISCUSSION

QUESTIONS A AND B

The project site is an existing open lot with an unoccupied house in advanced stages of disrepair. The existing scenic vista would not be adversely affected by the Proposed Project. The project site is not located within a state scenic highway and thus will not damage scenic resources such as trees, rock outcroppings, or historic buildings within the viewshed of such a highway. No Impact.

QUESTION C

Development of the Proposed Project would result in aesthetic features similar to the surrounding residential neighborhoods, would result in improved conditions, and Proposed Project features have been approved by the Design Review Board. While the proposed units would be two stories in height in an area dominated by single story residences, the Applicant revised design plans in consideration of concerns from surrounding residents. The two-story homes were revised to create predominantly hipped roofs to reduce the building mass and soften the shape of the roofs as viewed from the surrounding neighbors. Concerns for privacy were addressed by maximizing the preservation of mature trees along the east, west, and south boundary lines to provide screening. In addition, a privacy fence 6 feet high with an additional 1.5 feet of decorative lattice, total of 7.5 feet, has been added to the plans for the perimeter of the project site. A five-foot wide planter strip was added to the final design for additional privacy screening along the new fence. On October 16, 2014, an ISA Board Certified Master Arborist conducted a tree survey of the project site (Appendix A). The survey identified 18 trees...
requiring removal due to poor health and 24 trees that should be incorporated into the site design. Sheet 8 of Appendix B identifies the location of those 24 trees that would be incorporated into the site plan. Accordingly, implementation of the Proposed Project would result in a less-than-significant impact to the existing visual character. Less Than Significant.

QUESTION D

Currently there are limited sources of light on the project site being an open lot with an unoccupied residence in the advanced stages of disrepair. The Proposed Project will add eight new housing units and four street lamps to the project site (as discussed above under Section 2.2.5 Landscaping/ Lighting). The new lights on the property would increase security and deter vagrancy and loitering that currently exist on the project site. With the implementation of the Lighting Plan as proposed by the Applicant (Sheet 16 of Appendix B); light from the Proposed Project’s final design would be consistent with the surrounding residential neighborhood including the existing street lighting and would not constitute the addition of substantial sources of new daytime or nighttime lighting or glare. Less Than Significant.
3.2 AGRICULTURE AND FORESTRY RESOURCES

In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Department of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state’s inventory of forest land, including the Forest Range Assessment Project and Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board. Would the project:

a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural uses? [X]

b) Conflict with existing zoning for agricultural use, or a Williamson Act contract? [X]

c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))? [X]

d) Result in the loss of forest land or conversion of forest land to non-forest use? [X]

e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland to non-agricultural use or conversion of forest land to non-forest use? [X]

3.2.1 ENVIRONMENTAL SETTING

The project site is surrounded entirely by urban/developed residential subdivisions. It is located approximately 0.22 miles west of Ygnacio Valley Park (0.35 miles driving distance) and approximately 2.37 miles south of downtown Concord. The project site is relatively flat with ornamental tree and shrub vegetation. There is an abandoned residence on the northern half of the property, and not all ornamental vegetation has been maintained. The southern half of the
property is dominated by non-native grassland habitat with a few small trees growing along the southern and western boundaries. The property has not been used for agricultural purposes nor has it been used as forest land or timber harvest.

3.2.2 REGULATORY SETTING

FARMLAND MAPPING AND MONITORING PROGRAM

The U.S. Department of Agriculture (USDA) and the California Department of Conservation (CDC) have become involved with analyzing farmland losses. In 1975, the USDA Soil Conservation Service (SCS) began a mapping program to produce agricultural resource maps based on soil quality and land use across the nation. In 1982, the State of California created the Farmland Mapping and Monitoring Program (FMMP) within the CDC to carry on the mapping activity from the USDA-SCS on a continuing basis. The FMMP produces maps and statistical data used for analyzing impacts on California’s agricultural resources. Agricultural land is rated according to soil quality and irrigation status and is usually based on information obtained from aerial photographs and data from the NRCS (NRCS, 2015).

WILLIAMSON ACT

The California Legislature passed the California Land Conservation Act (commonly referred to as the “Williamson Act”) in 1965 to preserve agricultural lands and open space by discouraging premature and unnecessary conversion to urban uses. Under the Williamson Act, private landowners contract with counties and cities to voluntarily restrict privately-owned land to agricultural and compatible open-space uses. In return, restricted parcels are assessed for property tax purposes at a rate consistent with their actual use, rather than their potential market value. The vehicle for these agreements is a rolling-term, ten-year contract that is automatically renewed unless either party files a “notice of nonrenewal.” The project site is not subject to a Williamson Act contract (California Department of Conservation, 2013).

CITY PLANNING

The City of Concord is dominated by urban/residential/commercial zoned land. There is no land that is zoned for agriculture, forest land, timberland, or timberland zoned for Timberland Production. However, permitted agricultural uses are allowed in the OS, PR, RLC, and WRC districts in the City. Outside of the open space land use designated for the CCCFCD easement, the nearest land use where agricultural operations can be permitted is located approximately one mile east of the project site. Prime Farmland, Unique Farmland, and Farmland of Statewide Importance have not been identified within the City (FMMP, 2015).

3.2.3 IMPACT DISCUSSION

QUESTIONS A THROUGH E

The Proposed Project is not located on Prime Farmland, Unique Farmland, or Farmland of Statewide Importance and would not convert any farmland to a non-agricultural use. As stated above, there is no existing agricultural zoned land or forest land, timberland, or timberland zoned for Timberland Production within the city limits of Concord and there are no land uses allowing permitted agricultural operations within one mile of the project site. Accordingly, there
would be no conflict with existing zoning nor would the Proposed Project conflict with the Williamson Act as the project site is not subject to a Williamson Act contract. No Impact.
3.3 AIR QUALITY

Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:

a) Conflict with or obstruct implementation of the applicable air quality plan?				
b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?				
c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable Federal or State ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors)?				
d) Expose sensitive receptors to substantial pollutant concentrations?				
e) Create objectionable odors affecting a substantial number of people?				

3.3.1 ENVIRONMENTAL SETTING

Two types of air pollutants affect air quality in Concord: criteria air pollutants (CAPs) and toxic air contaminants (TACs). The major source of air pollutants in Concord is motor vehicle emissions. Heavy commute patterns throughout the San Francisco Bay Area have resulted in poor regional air quality levels.

Air quality issues in the City are under the jurisdiction of the Bay Area Air Quality Management District (BAAQMD), as the City is located in the San Francisco bay area air basin. Contra Costa County is one of seven counties that compromise the basin. The project site is located within the city limits of Concord and is surrounded by residential and urban developed land.

3.3.2 REGULATORY SETTING

The 1977 Federal Clean Air Act (CAA) required the United States Environmental Protection Agency (EPA) to identify National Ambient Air Quality Standards (NAAQS) to protect public health and welfare. NAAQS have been established for the six “criteria” air pollutants: ozone (O₃), carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), respirable particulate matter (PM₁₀), and lead. Pursuant to the 1990 CAA Amendments (CAA), the EPA has
classified air basins (or portions thereof) as either “attainment” or “non-attainment” for each
criteria air pollutant, based on whether or not the NAAQS have been achieved. Under the
NAAQS, County of Contra Costa is currently designated as non-attainment for ozone and
particulate matter 2.5 microns and less in size.

The California Air Resources Board (CARB) regulates mobile emissions sources and oversees
the activities of County Air Pollution Control Districts (APCDs) and regional Air Quality
Management Districts (AQMDs). CARB regulates local air quality indirectly by State Ambient
Air Quality Standards (CAAQS) and vehicle emission standards by conducting research
activities, and through its planning and coordinating activities.

California has adopted ambient standards that are more stringent than the Federal standards for
the criteria air pollutants. Under the California Clean Air Act (CCAA), patterned after the
Federal CAA, areas have been designated as attainment or non-attainment with respect to
CAAQS. Under the CAAQS, the Contra Costa County is designated a transitional non-
attainment area for 1-hour \(O_3\) and nonattainment for particulate matter ten micron in size (PM\(_{10}\)).

BAY AREA AIR QUALITY MANAGEMENT DISTRICT

The BAAQMD controls criteria and toxic air pollutants. The primary role of cities in achieving
and maintaining regional air quality is through land use decision-making, which can affect
vehicle miles traveled, and through other measures to manage the emission of pollutants.
BAAQMD identifies specific Transportation Control Measures (TCMs) that, together with other
approaches, may help reduce emissions in Concord, contributing to regional pollution control
and greenhouse gas reduction efforts.

The BAAQMD notes a particular need to reduce exposure to particulates and air toxics related
to freeways and major arterials, especially those with high volumes of truck traffic, as well as
exposure related to goods movement and distribution centers. Generally, ambient
concentrations of toxic air contaminants are similar throughout the urbanized area of the Bay
Area. BAAQMD regulates toxic air contaminants from stationary sources through their permit
process; mobile sources of toxic air contaminants are regulated indirectly through vehicle
emissions standards and though fuel specifications.

BAAQMD operates a regional network of air pollution monitoring stations that provide
information on ambient concentrations of criteria air pollutants and toxic air contaminants. Two
stations are operated within the City limits: number 2018, located at 2975 Treat Boulevard, and
number 2032, located at 2477 Arnold Industrial Way (0.9 miles south of project site).

CEQA SIGNIFICANCE CRITERIA

City regulations for Air Quality fall under the BAAQMD’s jurisdiction. In June of 2010, the
BAAQMD adopted Draft CEQA Guidelines (May 2010 Draft CEQA Guidelines), including
significance thresholds and project screening criteria to determine if project specific air quality
analysis is required. However, a lawsuit was filed contending that the adoption of the thresholds
and criteria the Air District did not follow the CEQA process. The responsible court found that
the BAAQMD did not comply with CEQA and that an assessment of the potential environmental
impacts from the adoption of the thresholds and criteria was required. The court did not determine whether the thresholds are or are not based on substantial evidence and thus valid on the merits. The court issued a writ of mandate ordering the District to set aside the thresholds and cease dissemination of them until the Air District had complied with CEQA. However, the court’s order permits the BAAQMD to develop and disseminate the CEQA Guidelines, as long as they do not implement the thresholds of significance. Accordingly, an updated CEQA guidance document was approved in May of 2012 (BAAQMD, 2013). The updated guidance document states that in accordance with the court order, the CEQA lead agency assessing air quality impacts within the BAAQMD’s jurisdiction will need to determine appropriate air quality thresholds. Because the Court did not invalidate the significance thresholds and screening criteria, the City, acting as Lead Agency under CEQA for the Proposed Project, has adopted the May 2010 Draft CEQA Guidelines including significance thresholds and associate screening criteria to address impacts to air quality.

Section 3.1.1 of the May 2010 Draft CEQA Guidelines states that if a project meets the screening criteria in Table 3-1, the project would not result in the generation of operational or construction-related CAPs or precursors that exceed the CEQA thresholds of significance. For single-family residences, the screening criteria for construction-related emissions is the development of 114 residences or less. For operational emissions, the screening criteria is the development of 325 residences or less.

SENSITIVE RECEPTORS

Some receptors are considered more sensitive than others to air pollutants. The reasons for greater than average sensitivity include pre-existing health problems, proximity to emissions and odor sources, or duration of exposure to air pollutants or odors. Schools, hospitals, and convalescent homes are considered to the relatively sensitive to poor air quality because children, elderly people, and the infirmed are more susceptible to respiratory distress and other air quality related health conditions. Residential areas are considered sensitive to air quality because people usually stay home for extended periods of time with an increased exposure to ambient air quality.

The closest sensitive receptor is located approximately 10 feet from the project site boundary on the west side and approximately 20 feet from the extent of planned grading. This sensitive receptor is a residence where the existing homeowner has built an addition farther onto the easement (closer to the project site) than the other homeowners surrounding the project site (Sheet 10 of Appendix B). The next closest sensitive receptor on the west side of the project site is located approximately 35 feet from the extent of the planned grading area.

3.3.3 IMPACT DISCUSSION

QUESTIONS A, B, AND C

Implementation of the Proposed Project would result in the construction and operation of eight new residences within the air basin. In accordance with the screening criteria adopted by the City for the Proposed Project, the construction and operation of eight new residences would not result in emission exceeding the significance thresholds for CAPs and associated precursors.
Therefore, in accordance with the May 2010 Draft CEQA Guidelines, the Proposed Project would not conflict with or obstruct implementation of the applicable air quality plan set forth by the BAAQMD to meet the NAAQS (BAAQMD, 2010). Accordingly, there would not be a violation of any air quality standard or contribution to an existing or projected air quality violation. In accordance with the results of the screening criteria, the Proposed Project would not result in a cumulatively considerable net increase of any CAP. **Less Than Significant.**

QUESTIONS D AND E

The Proposed Project would be consistent with surrounding land uses such as residential housing. There would be no alterations or additions to the existing flood canal and it would remain in working condition. Construction equipment has the potential to emit odor in the vicinity of the project site. Generally construction odors are not detected beyond the project site boundaries. Under the BAAQMD Guidelines, the Proposed Project is not considered an odor generating land use. Additionally, in accordance with BAAQMD Regulation 7, the Proposed Project would be restricted from emitting quantities of pollutants that would cause detriment, nuisance, or annoyance to any persons or to the public. The Proposed Project would not expose sensitive receptors, as defined above, to substantial pollutant concentrations or odors. **Less Than Significant.**
3.4 BIOLOGICAL RESOURCES

Would the project:

a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the CDFW or USFWS? □ □ ☒ □

b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, and regulations or by the CDFW or USFWS? □ □ □ ☒

c) Have a substantial adverse effect on federally-protected wetlands as defined by Section 404 of the federal Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption or other means? □ □ □ ☒

d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory corridors, or impede the use of native wildlife nursery sites? □ ☒ □ □

e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance? □ □ ▒ □

f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan? □ □ □ ☒

3.4.1 ENVIRONMENTAL SETTING

The Proposed Project is surrounded entirely by urban/developed residential subdivisions. The northern half of the property consists of various trees and ornamental vegetation surrounding an unoccupied residence, on the west and south sides, trees and shrubs grow intermixed with ornamental vegetation. Non-native grassland habitat dominates the center and southern portion of the property. On the east side, a flood control channel runs north/south and is not vegetated within the channel. There is no riparian habitat located on the project site. The project site is
nearly isolated from any other open space/ native habitat, with the closest undeveloped area approximately 1.1 miles east.

FIELD SURVEY AND ANALYSIS

A field survey of the project site was conducted in April 2014 by Marylee Guinon LLC with Olberding Environmental, INC. An updated record search of critical habitat and special-status species and a field survey for verification of sensitive plant and wildlife species, habitats, and biological constraints potentially occurring on the project site was conducted on April 30, 2015 by biologist Nicholas Bonzey of AES. This survey verified the earlier survey results of occurring species. During the April 30 survey, five mallard (*Anas platyrhynchos*) drakes were observed on the flood control channel and no other wildlife species were witnessed on the site. A summary of the results of the 2014 assessment and 2015 field verification are provided below.

CRITICAL HABITAT

A California Native Diversity Database (CNDDB) and Unites States Fish and Wildlife Service (USFWS) map was consulted for areas marked as critical habitat for listed species. Critical habitat Unit 1 and Unit 4 (Alameda whipsnake *Masticophis lateralis euryzanthus*) and critical habitat CCS-1 and CCS-2A (California red-legged frog *Rana daytonii*) occur within a five-mile radius of the project site.

SPECIAL-STATUS SPECIES

For the purposes of this assessment, special status has been defined to include those species that are:

- Listed as endangered or threatened under the Federal Endangered Species Act (FESA) (or formally proposed for, or candidates for, listing);
- Listed as endangered or threatened under the California Endangered Species Act (CESA) (or proposed for listing);
- Designated as endangered or rare, pursuant to California Fish and Wildlife (CDFW) Code (§1901);
- Designated as fully protected, pursuant to CDFW Code (§3511, §4700, or §5050);
- Designated as species of concern to the CDFW;
- Covered under the International Migratory Bird Treaty Act; or
- Defined as rare or endangered under CEQA.

SPECIAL STATUS WILDLIFE

A Trust Resource Report was generated from the US Fish and Wildlife Service (USFWS) Information, Planning, and Conservation (IPaC) system web site (see Appendix E). The report lists two amphibian species, two bird species, one crustacean species, two fish species, two flowering plant species, one insect species, and two reptile species that are proposed, candidate, threatened, or endangered federal status and have the potential to occur on the
project site. These are listed below. Critical habitat and details for each are further discussed in Appendix E.

- California Red-Legged Frog
- California Tiger Salamander
- California Clapper Rail
- California Least Tern
- Vernal Pool Fairy Shrimp
- Delta Smelt
- Steelhead
- Antioch Dunes Evening-primrose
- Contra Costa Wallflower
- Callippe Silverspot Butterfly
- Alameda Whipsnake
- Giant Garter Snake

No special status species were observed on the project site, and based on site conditions and both field surveys, no habitat exists to support a population of the protected species mentioned above. Both the California Red-Legged Frog (*Rana daytonii*) and the Alameda whipsnake (*Masticophis lateralis euryzanthus*) have critical habitat within five miles of the project site. However, due to the dense urban developed area between the critical habitat and the project site, it is unlikely for these species to be affected by the Proposed Project.

Migratory birds are listed in the IPaC report that have the potential to occur on the project site or fly over the project site. Not included in the IPaC report was the mallard (*Anas platyrhynchos*), a migratory species of waterfowl, which was observed on the project site in the flood control channel by the biologist.

3.4.2 REGULATORY SETTING

FEDERAL ENDANGERED SPECIES ACT

Under the FESA, the Secretary of the Interior and the Secretary of Commerce have the joint authority to list a species as threatened or endangered (16 United States Code [U.S.C.] 1533c). The purposes of the FESA are to provide a means to conserve the ecosystems that endangered and threatened species depend on and to provide a program for conservation and recovery of the species with the intent of removing the species from a listed, protected status. Regulatory protection is given to any species listed as endangered or threatened.

The Service and the National Marine Fisheries Service (NMFS) are the federal agencies that enforce the FESA. Pursuant to the requirements of the FESA, an agency reviewing a project within its jurisdiction must determine whether any federally listed threatened or endangered species may be present in the project area and determine whether the Proposed Project will have an impact on such species. Under the FESA, habitat loss is considered to be an impact to the species. In addition, the agency is required to determine whether the project is likely to jeopardize the continued existence of any species proposed for listing under the FESA or result
in the destruction or adverse modification of critical habitat proposed to be designated for such species (16 U.S.C. 1536).

CALIFORNIA DEPARTMENT OF FISH AND WILDLIFE

California Law, Fish and Game Code sections 3503 and 3503.5 provide for the protection of birds and birds’ nests by prohibiting the take of birds, their nests, or their eggs.

California Law, Fish and Game Code section 1600 et seq., requires notification to the CDFW for proposed projects that may: divert, obstruct, or change the natural flow or the bed, channel or bank of any river, stream, or lake; use material from a streambed; or result in the disposal or deposition of debris, waste, or other material where it may pass into any river stream, or lake.

CEQA GUIDELINES

Several federal and state statutes protect rare, threatened, and endangered species. The CEQA Guidelines Article 20, Section 15380 provides that a species not listed on the federal or state list of protected species may be considered rare, threatened, or endangered if the species can be shown to meet certain specified criteria. These criteria have been modeled after the definitions of endangered, rare, or threatened provided in the FESA and the CESA. This section of the Guidelines provides public agencies with the ability to protect a species from any potential impacts of proposed projects until the respective government agency has the opportunity to designate (list) that species as protected, if warranted.

The California Native Plant Society (CNPS) maintains an extensive list of plant species that it considers to be rare, threatened, or endangered, but have no designated status or protection under federal or state endangered species legislation. Impacts to CNPS listed species (e.g., CNPS list 1B and 2) are considered pursuant during CEQA environmental review.

CALIFORNIA ENDANGERED SPECIES ACT

Under the California Endangered Species Act (CESA), it is unlawful to take a State-listed endangered or threatened species. Fish and Game Code section 86 defines take as “hunt, pursue, catch, capture or kill or attempt to hunt, pursue, catch, capture or kill.” CESA take authorization, from the CDFW, should be obtained if there is potential of take of a State-listed plant or wildlife species.

MIGRATORY BIRD TREATY ACT

Migratory birds are protected under the federal Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C 703-711). The MBTA makes it unlawful to take, possess, buy, sell, purchase, or barter any migratory bird listed under 50 CFR 10, including feathers or other parts, nests, eggs, or products, except as allowed by implementing regulations (50 CFR 21). The direct injury or death of a migratory bird, due to construction activities or other construction-related disturbance that causes nest abandonment, nestling abandonment, or forced fledging would be considered take under federal law. As such, project-related disturbances must be reduced or eliminated during the nesting season.
3.4.3 IMPACT DISCUSSION

QUESTION A
The Proposed Project would not have a substantial adverse effect on any species identified as candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife (CDFW) or the United States Fish and Wildlife Service (USFWS) because no species within these categories have a potential to occur on the project site as explained previously. Less Than Significant.

QUESTION B
The project site does not consist of riparian habitat or any other sensitive natural community identified in local or regional plans, policies, or regulations by the CDFW or USFWS. No Impact.

QUESTION C
The Proposed Project is not located on or near a federally protected wetland as defined by Section 404 of the Clean Water Act and will not have an adverse effect through direct removal, filling, hydrological interruption, or any other means. No Impact.

QUESTION D
The project site is not located within a wildlife nursery site. The Proposed Project would not interfere with the movement of any native resident or migratory fish species. Nesting habitat for migratory birds and other birds of prey protected under the MBTA may include the trees scheduled for removal and annual grassland within the project site and vicinity. Potential disruption of nesting migratory birds and other birds of prey during construction could result in nest abandonment or mortality. Likewise, increased human activity and traffic, elevated noise levels, and operation of machinery could also impact birds if their nests are located within the vicinity of development areas. These impacts are potentially significant. With implementation of Mitigation Measures Bio-1 through Bio-3, impacts would be less than significant. Less than Significant with Mitigation.

QUESTION E
As shown on Sheet 8 of Appendix B, the Proposed Project would preserve 24 trees existing on the project site and would remove 18 trees. This is in accordance with the City of Concord tree ordinance for the preservation of the City’s mature and special trees. The Proposed Project would not conflict with any local policies protecting biological resources. Less Than Significant.

QUESTION F
The project site is not located on or near an area of Habitat Conservation Plan, Natural Community Plan, or other approved local, regional, or state habitat conservation plan and thus would not affect any such plans or areas. No Impact.
MITIGATION MEASURES

Bio-1 A qualified biologist shall conduct a pre-construction bird survey for nesting birds within 14 days prior to commencement of construction activities if anticipated to commence during the appropriate nesting season (between February 1 and August 31). The qualified biologist shall document and submit the results of the pre-construction survey in a letter to CDFW and the City within 30 days following the survey. The letter shall include: a description of the methodology including dates of field visits, the names of survey personnel, a list of references cited and persons contacted, and a map showing the location(s) of any bird nests observed on the project site. If no active nests are identified during the pre-construction survey then no further mitigation is required. Evidence, in the form of a letter report documenting the results of the survey, shall be submitted to the City Planning Department prior to commencement of construction activities.

Bio-2 If any active nests are identified during the pre-construction survey within the project site, a buffer zone will be established around the nests. A qualified biologist will monitor nests weekly during construction to evaluate potential nesting disturbance by construction activities. The biologist will delimit the buffer zone with construction tape or pin flags within 250 feet of the active nest and maintain the buffer zone until the end of the breeding season or until the young have fledged. Guidance from CDFW will be requested if establishing a 250-foot buffer zone is impractical. Guidance from CDFW will be requested if the nestlings within the active nest appear disturbed.

Bio-3 Trees anticipated for removal should be removed outside of the nesting season (February 1 and August 31). If trees are anticipated to be removed during the nesting season, a pre-construction survey shall be conducted by a qualified biologist. If the survey shows that there is no evidence of active nests, then the tree shall be removed within ten days following the survey. If active nests are located within trees identified for removal, a 250-foot buffer shall be installed around the tree. Guidance from CDFW will be requested if the 250-foot buffer is infeasible.
3.5 CULTURAL RESOURCES

Would the project:

- **a)** Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5?
 - [] Potentially Significant Impact
 - [] Less-Than-Significant with Mitigation Incorporation
 - [] Less-Than-Significant Impact
 - [x] No Impact

- **b)** Cause a substantial adverse change in the significance of an archaeological resource as defined in §15064.5?
 - [] Potentially Significant Impact
 - [x] Less-Than-Significant with Mitigation Incorporation
 - [] Less-Than-Significant Impact
 - [] No Impact

- **c)** Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?
 - [] Potentially Significant Impact
 - [] Less-Than-Significant with Mitigation Incorporation
 - [x] Less-Than-Significant Impact
 - [] No Impact

- **d)** Disturb any human remains, including those interred outside of formal cemeteries?
 - [] Potentially Significant Impact
 - [x] Less-Than-Significant with Mitigation Incorporation
 - [] Less-Than-Significant Impact
 - [] No Impact

- **e)** Cause a substantial adverse change in the significance of a tribal cultural resource as defined in Public Resources Code Section 21704?
 - [] Potentially Significant Impact
 - [] Less-Than-Significant with Mitigation Incorporation
 - [] Less-Than-Significant Impact
 - [] No Impact

3.5.1 ENVIRONMENTAL SETTING

ARCHAEOLOGICAL SETTING

This section presents information based on a record search provided by the Northwest Information Center (NWIC File No. 14-1366), a field survey conducted on April 30, 2015, and an on-line paleontological database search conducted on April 13, 2015 ([Appendix F-Confidential](#)).

The record search failed to identify any cultural resources within one half-mile of the project site. The record search identified only two previous studies which were conducted within one half-mile of the current project location, however those studies did not result in the recordation of any cultural resources. The only resources identified during the field effort consisted of a dilapidated residence and a segment of Ditch #2 of the Contra Costa Canal. The ditch segment measured approximately 40 feet wide and 10-12 feet deep; the ditch was lined with a combination of rock, concrete, and earth. The residence, now abandoned, has a front-facing U-shaped floor plan, including an attached garage, wood cladding, and a central ridge chimney and composition shingle roof. The front windows are single-hung, but the back windows have been replaced with aluminum sliders. All doors appear to have been replaced by plywood. There is also a shed in...
the back yard, as well as two fenced garden areas. There are some associated decorative plantings, including ivy, fig trees, bamboo, roses, and palm.

A title search on the property indicated that an exclusive 20-foot roadway and utility easement centered on the southwest property line was filed in 1950, and a search of the Contra Costa County Assessor’s records performed on April 13, 2015 indicated that the residence was constructed in 1952 and the 72-foot flood control easement was recorded in 1961.

HISTORICAL SETTING

The project site lies within the historic Rancho Arroyo de Las Nueces y Bolbones (also called "San Miguel"). A 17,782-acre Mexican land grant given to Juana Sanchez de Pacheco in 1834. Juana was the widow of soldier Miguel Pacheco, son of members of the 1776 De Anza Expedition. The Pacheco family used the rancho for cattle, but did not occupy the land.

ETHNOGRAPHIC SETTING

Prehistorically, the Concord area was occupied by Bay Miwok Indians, organized in tribes of related families, who were well-placed to exploit the rich resources offered by estuaries and grasslands. Proximity to Spanish missions led to early resettlement and conversion at the same time European diseases were taking significant toll on the population by the first half of the 19th century.

3.5.2 REGULATORY SETTING

CALIFORNIA ENVIRONMENTAL QUALITY ACT

CEQA requires that, for projects financed by, or requiring the discretionary approval of public agencies in California, that the effects that a proposed project has on historical or unique archaeological resources be considered (Public Resources Code Section 21083.2). Historical resources are buildings, sites, structures, or objects, each of which may have historical, architectural, archaeological, cultural, or scientific importance (PRC Section 50201). CEQA Guidelines Section 15064.5 define three cases in which a property may qualify as a historical resource for the purpose of CEQA review:

1. If it is listed in, or determined to be eligible by the State Historical Resources Commission for listing in the California Register of Historical Resources (CRHR); or

2. It is included in a local register of historical resource or identified as significant in a qualifying historical resource survey; or

3. The resource appears in, or is determined eligible for the listing, in the CRHR. Public Resources Code Section 5024.1 and CEQA Guidelines 15064.5 define eligibility requirements and states that a resource may be eligible for inclusion in the CRHR if it:

 a. Is associated with events that have made a significant contribution to the broad patterns of California’s history and cultural heritage;

 b. Is associated with the lives of persons important in our past;
c. embodies the distinctive characteristics of a type, period, region, or method of
construction, represents the work of an important creative individual, or possesses
high artistic values; or

d. has yielded, or may be likely to yield, information important in prehistory or history.

Sites younger than 45 years, unless of exceptional importance, are not eligible for listing in the
CRHR.

Properties must retain integrity to be eligible for listing on the CRHR. Properties that are listed
in or eligible for listing in the National Register of Historic Places are automatically considered
eligible for listing in the CRHR, and thus are significant historical resources for the purpose of
CEQA (PRC section 5024.1(d)(1)).

a) The resource is included in a local register of historic resources, as defined in section
5020.1(k) of the PRC, or is identified as significant in a historical resources survey that
meets the requirements of section 5024.1(g) of the PRC (unless the preponderance of
evidence demonstrates that the resource is not historically or culturally significant).

b) The lead agency determines that the resource may be a historical resource as defined in
PRC section 5020.1(j), 5024.1, or significant as supported by substantial evidence in
light of the whole record.

Public Resources Code Section 21083.2 governs the treatment of unique archaeological
resources, defined as “an archaeological artifact, object, or site about which it can be clearly
 demonstrated” as meeting any of the following criteria:

- Contains information needed to answer important scientific research questions and that
 there is a demonstrable public interest in that information.
- Has a special and particular quality such as being the oldest of its type or the best
 example of its type.
- Is directly associated with a scientifically recognized important prehistoric or historic
 event or person.

CALIFORNIA PUBLIC RESOURCES CODE

Public Resources Code Section 5097.5 prohibits “knowing and willful” excavation, removal,
destruction, injury, or defacement of paleontological resources on public lands without prior
permission from the appropriate agency. Public lands include those “owned by, or under the
jurisdiction of, the state, or any city, county, district, authority, or public corporation, or any
agency thereof.” If paleontological resources are identified within a given project area, the lead
agency must consider those resources when evaluating a proposed project’s impacts. The level
of consideration may vary with the importance of the resource in question.

ASSEMBLY BILL 52

On September 25, 2014, Governor Edmund G. Brown, Jr., signed Assembly Bill No. 52 (“AB
52”) into law. The new law expands CEQA to provide that any public or private “project with an
effect that may cause a substantial adverse change in the significance of a tribal cultural resource is a project that may have a significant effect on the environment." The law will apply to any project that has a notice of preparation, a notice of negative declaration, or mitigated negative declaration filed on or after July 1, 2015. More specifically, the law creates a new category of resources in CEQA called “tribal cultural resources” and seeks to engage the expertise of Native American tribes in the protection and preservation of those resources. To fulfill that purpose, the new law requires the lead agency to consult with a local Native American tribe as part of the environmental review process.

AB 52 requires consultation with California Native American tribes before the release of any environmental document (e.g., mitigated negative declaration or environmental impact report). The process is initiated by contacting the Native American Heritage Commission (NAHC) for a list of tribes specifically identified for AB 52; after receipt of results, the Lead Agency has 14 days to notify all tribes who’ve previously signed up for notification within set geographies. The lead agency must consult with a tribe within the geographical area of the project if the tribe (1) requested the lead agency to inform it of proposed projects within its area, and (2) the tribe responds within 30 days of receiving notification and requests consultation. During consultation, the parties may discuss possible mitigation measures to avoid or lessen the impact on tribal cultural resources. To protect the resource, any information submitted by a tribe during the environmental review process shall not be included in the environmental document or otherwise disclosed to the public.

A request to search the Sacred Lands Files for a list of tribal organizations/individuals that may have information regarding cultural resources in the project area was sent to the NAHC on April 7, 2014. A response was received from the NAHC on April 29, 2015 listing three contacts that may have knowledge of cultural resources in the project area. Letters to these individuals were sent on June 21, 2015. To date, no response has been received.

PALEONTOLOGICAL RESOURCES REGULATORY SETTING

CEQA provides protection for unique paleontological resources and unique geologic features, and requires that planners consider impacts to such resources in the project review process. The Act distinguishes between ubiquitous fossils that are of little scientific consequence, and those, which are of some importance by providing protection for the latter. While CEQA does not precisely define unique paleontological resources, criteria established by the Society of Vertebrate Paleontology (SVP) provide guidance. The SVP defines a significant paleontological resource as one that meets one or more of the following criteria (SVP, 1995):

- Provides important information shedding light on evolutionary trends and/or helping to relate living organisms to extinct organisms;
- provides important information regarding the development of biological communities;
- demonstrates unusual circumstances in the history of life;
- represents a rare taxon or a rare or unique occurrence, is in short supply and in danger of being destroyed or depleted;
CEQA similarly fails to define precisely a unique geologic feature. For the purpose of this analysis, a *unique geologic feature* is a resource or formation that:

- Is the best example locally or regionally;
- embodies distinct characteristics of a geologic principal that is exclusive locally or regionally;
- provides a key piece of geologic information important in geology or geologic history;
- is a type locality of a geologic feature; or
- contains a mineral not known to occur elsewhere locally or regionally; or is a common teaching tool.

3.5.3 IMPACT DISCUSSION

QUESTION A

No historical resources, as defined in CEQA Guidelines 15064.5, were identified either during the background research or the field survey. Therefore, construction of the Proposed Project will have no impact on historical resources. **No Impact.**

QUESTION B

It is unlikely that archaeological resources exist within the Proposed Project site due to the lack of water sources or other features that would attract prehistoric use or occupation of the area. If any archaeological resources are encountered during construction of the Proposed Project, impacts to these resources would be potentially significant. With implementation of **Mitigation Measure CR-1**, impacts to archaeological resources discovered during construction of the Proposed Project would be reduced to less than significant. **Less Than Significant With Mitigation.**

QUESTION C

The project site is located on recent alluvial deposits underlain by Pleistocene alluvial fans, and construction impacts, anticipated to range from 1 to 3 feet below surface, are unlikely to penetrate sufficiently deep to affect any underlying formations that would include paleontological materials. Further, an on-line search of the University of California Museum of Paleontology on April 13, 2015 failed to identify any fossil localities in or near the project site. Therefore, construction of the Proposed Project will have no impact on paleontological resources. **No Impact.**
QUESTION D

It is unlikely that human remains are located within the Proposed Project site due to the lack of water sources or other features that would attract prehistoric use or occupation of the area. If any human remains are encountered during construction, impacts to these remains would be potentially significant. With implementation of Mitigation Measure CR-2, impacts to human remains discovered during construction would be reduced to less than significant. **Less Than Significant With Mitigation.**

QUESTION E

Although no responses have been received following the required consultation criteria under AB 52, the potential for the Proposed Project to cause a substantial adverse change in the significance of a tribal cultural resource is minimal considering that the project site is relatively disturbed and surrounding by existing development and the site exhibits a lack of potential resources available for exploitation prehistorically. Accordingly, implementation of the Proposed Project would result in a less-than-significant impact on tribal cultural resources. **Less Than Significant.**

MITIGATION MEASURES

CR-1
Stop Potentially Damaging Work if Archaeological Resources Are Uncovered During Construction, Assess the Significance of the Find, and Pursue Appropriate Management. If previously unrecorded cultural resources (e.g., unusual amounts of shell, animal bone, bottle glass, ceramics, structure/building remains, etc.) are encountered during surveys of previously unexamined area where ground disturbance is planned or during project-related ground-disturbing activities, all ground-disturbing activities shall be halted within a 100-foot radius of the find. A qualified professional archaeologist shall identify the materials, determine their possible significance, and formulate appropriate measures for their treatment, which shall be implemented by the project applicants and their contractors. Potential treatment methods for significant and potentially significant resources may include, but would not be limited to avoidance of the resource through changes in construction methods or project design or implementation of a program of testing and data recovery, in accordance with all applicable federal and state requirements.

CR-2
Stop Potentially Damaging Work if Human Remains Are Uncovered During Construction, Assess the Significance of the Find, and Pursue Appropriate Management. California law recognizes the need to protect interred human remains, particularly Native American burials and items of cultural patrimony, from vandalism and inadvertent destruction. The procedures for the treatment of discovered human remains are contained in California Health and Safety Code §7050.5 and §7052 and California Public Resources Code §5097. In accordance with the California Health and Safety Code, if human remains are uncovered during ground-disturbing activities, all such activities within a 100-foot radius of the find shall be halted immediately and the project applicants’ designated representative shall be notified. The project applicants shall immediately notify the county coroner and a qualified professional archaeologist. The coroner is required to
examine all discoveries of human remains within 48 hours of receiving notice of a discovery on private or state lands (Health and Safety Code Section 7050.5[b]). If the coroner determines that the remains are those of a Native American, he or she must contact the NAHC by phone within 24 hours of making that determination (Health and Safety Code Section 7050[c]). The project applicant or its appointed representative and the professional archaeologist shall contact the Most Likely Descendent (MLD), as determined by the NAHC, regarding the remains. The MLD, in cooperation with the property owner and the lead agencies shall determine the ultimate disposition of the remains.
3.6 GEOLOGY AND SOILS

Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less-Than-Significant with Mitigation Incorporation</th>
<th>Less-Than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>i) Rupture of a known earthquake fault, as delineated in the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines & Geology Special Publication 42.</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>ii) Strong seismic ground shaking?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>iii) Seismic-related ground failure, including liquefaction?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>iv) Landslides?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Result in substantial soil erosion or the loss of topsoil?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d) Be located on expansive soils, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e) Have soils incapable of adequately supporting the use of septic tanks or alternate wastewater disposal systems where sewers are not available for the disposal of wastewater?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>
3.6.1 ENVIRONMENTAL SETTING

A preliminary geotechnical exploration was conducted on February 18, 2014 by ENGEO Incorporated and it is attached as Appendix D.

The project site is located in the Coast Ranges geomorphic province of California. The Coast Ranges are characterized by a series of northwest-trending valleys and mountain ranges. The site is located in a broad valley underlain by thick alluvial deposits. Previous mapping efforts (refer to Appendix D) indicates that the site is underlain by late Pleistocene alluvial fan deposits. The site is relatively flat and not susceptible to landslides, although the southern portion of the site appears to be elevated by two to three feet with fill.

SEISMICITY

The nearest known active fault is the Concord fault located approximately one mile northeast of the project site. The Calaveras, Hayward, and San Andreas faults are located approximately 3 miles, 16 miles, and 40 miles to the southwest, respectively. The Greenville-March Creek fault is located approximately five miles to the northeast. Because of the proximity of the faults, the region is considered seismically active. Numerous, small, earthquakes occur every year in the region, and large earthquakes have been recorded and can be expected to occur in the future.

The primary seismic hazards in the project site are considered to be ground shaking and ground failure. Ground shaking occurs as energy. It is transmitted as elastic waves up through the bedrock to become a series of complex waves or oscillations in the ground surface. Such ground shaking is one of the main causes of earthquake damage. According to the Seismic Shaking Hazards in California map, the project site is located in an area with relative high potential for peak ground acceleration during a seismic event (CGS, 2015). Liquefaction and landslides can increase damage from ground shaking. Liquefaction changes water-saturated soil to a semi-liquid state, removing support from foundations and causing buildings to sink. Liquefaction is determined by a number of factors, including soil type, depth to water, soil density, and the duration and intensity of ground shaking (USGS, 2008). Alluvial deposits consisting of stiff clay were encountered during the soil exploration (Appendix D) to depths of about 52 feet that are not considered susceptible to liquefaction. On this basis, the potential for liquefaction at the site appears to be low.

SOIL AND SOIL HAZARDS

Soil sampling conducted as part of the preliminary geotechnical exploration indicates that the project site is located on expansive soils as defined in Table 18-1-B of the Uniform Building Code. However, the results indicate that these soils are only in the topsoil and would not impact any building of infrastructure if special attention during grading is given. Expansive soils are largely comprised of clays, which greatly increase in volume when water is absorbed and shrink when dried. Expansive soils are of concern because building foundations may rise during the rainy season and fall during the dry season in response to the clay's action; this can cause structural distortion.
3.6.2 REGULATORY SETTING

ALQUIST-PRILO EARTHQUAKE FAULT ZONING ACT
The Alquist-Priolo Earthquake Fault Zoning Act was passed in 1972; it prohibits the placement of structures intended for human occupancy from being built across active fault traces in California. The Act requires delineation of zones (Alquist-Priolo zones) along active faults in order to address seismic concerns as they relate to public safety and project design. The Act only addresses the hazards of surface fault rupture and is not intended to regulate activities relating to other earthquake hazards such as liquefaction, landslides, or tsunamis. Cities and counties are required to regulate development projects within Alquist-Priolo zones.

SEISMIC HAZARDS MAPPING ACT
This Seismic Hazards Mapping Act requires cities, county, and local permitting agencies to regulate urbanization development and redevelopment projects within seismic hazard zones that have been delineated by the State Geologist. Before a development permit can be granted to a proposed project located near a seismic hazard zone, a geotechnical investigation of the site must be conducted and appropriate mitigation measures incorporated into the project design.

3.6.3 IMPACT DISCUSSION

QUESTION A
The Proposed Project would not be developed on a fault line as delineated in the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area and therefore no adverse impacts from fault rupture would result from project development. While there would be a potential for strong seismic ground shaking or seismic-related ground failure, the residences are required to be constructed in accordance with the California Building Code and associated seismic provisions for this region of California. Due to the relatively flat topography and soil structure, there would not be a risk for landslides based on the activities of the Proposed Project. The Proposed Project would not expose people or structures to potential substantial adverse effects including the risk of loss, injury, or death. Less Than Significant.

QUESTION B
There would be no substantial soil erosion or loss of topsoil from the Proposed Project. A stormwater control plan attached as Appendix C has been incorporated into the design of the Proposed Project to ensure that soil erosion would be minimized and in compliance with local discharge limits. The Proposed Project would disturb less than one acre of soil and therefore does not require coverage under the National Pollutant Discharge Elimination System general permit for construction activities. The Proposed Project is required to comply with all City development standards and with the inclusion of the grading and drainage plan (Sheet 12 of Appendix B) impacts would be less than significant in relation to soil erosion. Less Than Significant.
QUESTION C
The Proposed Project is not located on a geological soil that is unstable or would become stable as a result of the Proposed Project activities. The site is relatively flat and not susceptible to landslides, lateral spreading, subsidence, liquefaction, or collapse. No Impact.

QUESTION D
While the project site is located on expansive soils as defined in Table 18-1-B of the Uniform Building Code; the results of the preliminary geotechnical exploration conclude that due to the shallow depth of the expansive soils, conventional grading operations, incorporating fill placement specifications tailored to the expansive characteristics of the soil, and use of a mat foundation (either post-tensioned or conventionally reinforced) are common, generally cost-effective measures to address the expansive potential of the foundation soils. Based upon our initial findings, the effects of expansive soils are expected to pose a low impact when properly addressed during construction. As discussed in Section 2.2.4, implementation of the Proposed Project includes ensuring adequate watering of the soils as recommended by the preliminary geotechnical exploration to address expansive soils during construction activities minimizing the potential for adverse impacts from soil expansion and contraction (Appendix D). Less Than Significant.

QUESTION E
The project site consists of connection to the City's municipal utility wastewater conveyance system and therefore no on site wastewater disposal system would be developed on the project site and accordingly there would be no impact concerning soil suitability for such disposal. No Impact.
3.7 GREENHOUSE GAS EMISSIONS

Would the project:

a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant effect on the environment?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less-Than-Significant with Mitigation Incorporation</th>
<th>Less-Than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

b) Conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less-Than-Significant with Mitigation Incorporation</th>
<th>Less-Than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

3.7.1 ENVIRONMENTAL SETTING

The project site is located within the city limits of Concord and is surrounded by residential development. Approximately 240 feet south of the project site, Bay Area Rapid Transit’s (BART’s) Pittsburg/Bay Point line runs northeast to southwest and all connecting roadways to the project site are residential roads. Landscaping and a bioretention/ bioswale designated areas will be implemented throughout the project site and near the CCCFCD’s canal located on the east side of the project site. The City adopted a Citywide Climate Action Plan (CAP) July 23, 2013 (source: http://www.cityofconcord.org/pdf/dept/planning/climate.pdf) and utilizes the BAAQMD as its regulatory authority.

3.7.2 REGULATORY SETTING

In references to greenhouse gases (GHGs) on a global level, activities such as motor vehicle use, manufacturing, and power plant operations are generating carbon dioxide, methane, and other GHGs faster than the earth’s atmosphere can absorb them. These emissions are expected to lead to global temperature increases in the next century, potentially affecting Concord’s flora and fauna, water supply, and climate. Assembly Bill (AB) 32, approved by the State legislature in 2006, required the California Air Resources Board to develop regulations and programs to reduce the state’s GHG emissions to 1990 levels by 2020. Subsequently, Senate Bill (SB) 375 was adopted to reduce statewide motor vehicle emissions, in part by improving coordination between land use, transportation and housing decisions. Like other cities in California, the City is taking action to address climate change through its land use and transportation policies. The City has adopted a City-Wide CAP which outlines the strategies for achieving this objective. The most basic elements of this CAP are to concentrate new development around BART; build at densities that support transit use; develop a well-connected bicycle and pedestrian system; provide a balanced mix of employment, services, and housing to minimize trip lengths; and incorporate advanced energy conservation and efficiency measures in the design of new buildings and infrastructure. While the CAP does not include significance thresholds for CEQA impact analyses the City has adopted the BAAQMD May 2010 Draft.
CEQA Guidelines. Those guidelines also include significance thresholds and screening criteria to address potential GHG emissions impacts.

BAY AREA AIR QUALITY MANAGEMENT DISTRICT

As discussed under Air Quality, the City, acting as Lead Agency under CEQA for the Proposed Project, has adopted the BAAQMD May 2010 Draft CEQA Guidelines which also include significance thresholds and associated screening criteria to address impacts from GHG emissions. Section 3.1.1 of the May 2010 Draft CEQA Guidelines states that if the Proposed Project meets the screening criteria in Table 3-1 (attached as Appendix G), the Proposed Project would not result in the generation of GHGs that exceed the CEQA thresholds of significance. For single-family residences, the screening criteria for GHGs is the development of 56 residences or less.

3.7.3 IMPACT DISCUSSION

QUESTIONS A AND B

Implementation of the Proposed Project would result in the development of eight new residences within the air basin. In accordance with the screening criteria adopted by the City for the Proposed Project, the development of eight new residences would not result in emission exceeding the significance thresholds for GHGs. The Proposed Project would not conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs. In accordance with the results of the screening criteria, the Proposed Project would not result in a cumulatively considerable net increase of GHGs. **Less Than Significant.**
3.8 HAZARDS AND HAZARDOUS MATERIALS

Would the project:

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials? □ □ □ □

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment? □ □ □ □

c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within ¼ mile of an existing or proposed school? □ □ □ □

d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code §65962.5 and, as a result, would it create a significant hazard to the public or to the environment? □ □ □ □

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or a public use airport, would the project result in a safety hazard for people residing or working in the project area? □ □ □ □

f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area? □ □ □ □

g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan? □ □ □ □

h) Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands? □ □ □ □
3.8.1 ENVIRONMENTAL SETTING

HAZARDOUS MATERIALS

A material is considered hazardous if it appears on a list of hazardous materials prepared by a federal, State, or local agency, or if it has characteristics defined as hazardous by such an agency. A hazardous material is defined in Title 22 of the California Code of Regulations (CCR) as:

“A substance or combination of substances which, because of its quantity, concentration, or physical, chemical or infectious characteristics, may either (1) cause, or significantly contribute to, an increase in mortality or an increase in serious irreversible, or incapacitating reversible, illness; or (2) pose a substantial present or potential hazard to human health or environment when improperly treated, stored, transported or disposed of or otherwise managed” (CCR, Title 22, Section 66260.10).

3.8.2 REGULATORY SETTING

CORTESE LIST

California Government Code Section 65962.5(a) states that The DTSC shall compile and update as appropriate, but at least annually a list of detailing the following (commonly known as the Cortese List):

1. All hazardous waste facilities subject to corrective action pursuant to Section 25187.5 of the Health and Safety Code.
2. All land designated as hazardous waste property or border zone property pursuant to Article 11 (commencing with Section 25220) of Chapter 6.5 of Division 20 of the Health and Safety Code.
3. All information received by the Department of Toxic Substances Control pursuant to Section 25242 of the Health and Safety Code on hazardous waste disposals on public land.
4. All sites listed pursuant to Section 25356 of the Health and Safety Code.

ASBESTOS CONTAINING BUILDING MATERIALS

Under District Regulation 11, Rule 2, the BAAQMD regulates the demolition of buildings and structures which may contain asbestos. Because asbestos has been used extensively in residential, commercial and industrial construction, BAAQMD Regulation 11-2-401.3 requires that for every demolition (even when no asbestos is present), a notification must be made to the BAAQMD at least 10 working days (except in special circumstances) prior to commencement of demolition.

REGIONAL SETTING

EnviroStor is a search tool for the DTSC that contains information on hazardous materials incidents in California, including contaminated sites as well as lists of facilities that process or
transfer toxic waste, including the sites listed on the Cortese List. The database includes federally designated sites, state response sites, military sites, school sites and voluntary cleanup sites. Each entry in the database contains a report which includes information on the current address, site status, past contaminating uses, history of the site, current and historical toxic substances present, and land use restrictions, potential environmental impacts of toxic substances present as well as completed or planned projects. Sites that were once listed as contaminated but have been cleaned up or have had project completed are also specially listed. A search of the Proposed Project area indicated that there are no sites listed on the EnviroStor database within 1,000 feet of the project site (DTSC, 2015). Accordingly, there are no sites listed on the Cortese Listed located within 1,000 feet of the project site. The nearest EnviroStor listing (ID# 60000557) is located approximately 1 mile northeast of the project site. The listed incident pertains to a polychlorinated biphenyls soil remediation project for which the case was closed in 2007 (DTSC, 2015).

PROJECT SITE

The unoccupied residence on the project site was built in 1952 and may contain asbestos and/or lead-based paint within the structure and building/finishing materials. State-level agencies, in conjunction with the USEPA and Occupational Safety and Health Administration (OSHA) regulate removal, abatement, and transport procedures for asbestos-containing materials (ACMs). ACMs are materials that contain asbestos, a naturally-occurring fibrous mineral that has been mined for its useful thermal properties and tensile strength. Releases of asbestos from industrial, demolition or construction activities are prohibited by these regulations and medical evaluation and monitoring is required for employees performing activities that could expose them to asbestos. Additionally, the regulations include mandatory warnings and practices that must be followed to reduce the risk for asbestos emissions and exposure. Federal, state and local agencies must be notified prior to the onset of demolition or construction activities with the potential to release asbestos. Lead-based paint (LBP), which can result in lead poisoning when consumed or inhaled, was widely used in the past to coat and decorate buildings. Lead poisoning can cause anemia and damage to the brain and nervous system. Like ACMs, LBP generally does not pose a health risk to occupants when left undisturbed; however, deterioration, damage, or disturbance will result in hazardous exposure. In 1978, the use of LBP was banned. Therefore, only buildings built before 1978 are presumed to contain LBP.

AIRPORT HAZARD ZONES

Airports and air strips are considered to contain harmful material and are considered potentially hazardous zones. The project site is located 4.3 miles south of the nearest airport to the project site (Buchanan Field Airport), and therefore is located outside of any airport hazard zone.

WILDLANDS

The project site is within an urban neighborhood surrounded by residential land use, which is typically not extremely susceptible to wildland fire. The project site is located in a non-Very High Fire Hazard Severity Zone (CAL FIRE, 2009).
3.8.3 IMPACT DISCUSSION

QUESTION A AND B
The Proposed Project would not create a significant hazard to the public or the environment through the routine transport, use or disposal of hazardous materials as all federal, state, and local regulations and mandatory steps will be taken to ensure any hazardous materials are properly transported, used, and disposed of. During grading and construction activities, it is anticipated that limited quantities of miscellaneous hazardous substances, such as gasoline, diesel fuel, hydraulic fluid, solvents, oils, paints, etc. would be brought onto the site. Temporary storage units (bulk above-ground storage tanks, 55-gallon drums, sheds/trailers, etc.) would likely be used by various contractors for fueling and maintenance purposes. As with any liquid and solid, the handling and transfer between one container to another has the potential for an accidental release. Construction contractors will be required to comply with applicable federal and State environmental and workplace safety laws. Adherence to these regulatory requirements would ensure that this impact is less than significant. The demolition of the existing residence on the project site requires compliance with BAAQMD rules to ensure minimal releases of ACMs and lead-based paint. As stated in Section 2.2, the Applicant would ensure the Proposed Project would be constructed in compliance with BAAQMD Regulation 11, Rule 2 and LBP removal protocols and therefore would result in a less than significant impact in relation to asbestos and lead. Less than Significant.

QUESTION C
The project site is not located within 0.25 miles of a proposed or existing school; the closest school is Oak Grove Middle School, which is located 0.6 miles from the project site. In addition, through compliance with BAAQMD Regulation 11, Rule 2, BAAQMD Regulation 11, Rule 2 and LBP removal protocols, demolition activities associated with the Proposed Project would result in a minimal potential for asbestos and lead emissions. Less than Significant.

QUESTION D
There are no listings of hazardous materials incidents compiled pursuant to Government Code §65962.5 (Cortese List) within 1,000 feet of the project site. Implementation of the Proposed Project would not create a significant hazard to the public or environment. No Impact.

QUESTIONS E AND F
The Proposed Project would not result in a safety hazard for people residing or working on the project site. The project site is not located within two miles of land that is used as an airstrip, nor is it located within two miles of a public or private airport. No Impact.

QUESTION G
The Proposed Project would not impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan. The Proposed Project would be developed on existing open space and would not result in the blockage of access routes or evacuation routes adopted within an emergency response plan or emergency evaluation plan. In addition, the Proposed Project has implemented a standard fire department turnaround area.
between houses 6 and 7 of the final site plan to ensure the efficiency of emergency response plans. **No Impact.**

QUESTION H
The Proposed Project would not expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands. **No Impact.**
3.9 HYDROLOGY AND WATER QUALITY

Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less-Than-Significant with Mitigation Incorporation</th>
<th>Less-Than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>Violate any water quality standards or waste discharge requirements?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>b)</td>
<td>Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>c)</td>
<td>Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>d)</td>
<td>Substantially alter the existing drainage pattern of a site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>e)</td>
<td>Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>f)</td>
<td>Otherwise substantially degrade water quality?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>g)</td>
<td>Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>h)</td>
<td>Place within a 100-year flood hazard area structures which would impede or redirect flood flows?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>i)</td>
<td>Expose people or structures to a significant risk of loss, injury or death involving flooding,</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>
3.0 Environmental Checklist

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less-Than-Significant with Mitigation Incorporation</th>
<th>Less-Than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

including flooding as a result of the failure of a levee or dam?

j) Inundation by seiche, tsunami, or mudflow? ☒ ☐ ☐ ☒

3.9.1 ENVIRONMENTAL SETTING

Concord sits south of Suisun Bay. Surface water bodies within Concord include Mallard Reservoir, Walnut Creek, Pacheco Creek, Kirker Creek, Mt. Diablo Creek, Pine Creek, Galindo Creek, Grayson Creek, Clayton Canal, Contra Costa Canal, and slough and wetlands located along the bay. The City is primarily in the Mt. Diablo Creek and Walnut Creek watersheds. Concord is underlain by two groundwater basins, Clayton Valley and Ygnacio Valley.

The project site is located within an urban setting with storm water draining either to the City municipal system or the flood control canal (discussed below under Flooding). Apart from the CCCFCD canal, the project site has no direct access to surface waters and therefore currently does not directly discharge to a surface water feature. The City is incorporated into the Contra Costa Clean Water Project and associated National Pollutant Discharge Elimination System (NPDES) Permit for municipal storm water systems (Municipal Regional Permit). Provision C.3 in the Municipal Regional Permit requires site designs for new developments and redevelopments to minimize the area of new roofs and paving. Where feasible, pervious surfaces should be used instead of paving so that runoff can infiltrate to the underlying soil. Remaining runoff from impervious areas must be captured and used or treated using bioretention. In some developments, the rates and durations of site runoff must also be controlled. The C.3 requirements are separate from, and in addition to, requirements for erosion and sediment control and for pollution prevention measures during construction. Adherence to the C.3 requirements minimizes water quality impacts from new development to maintain regional compliance with the Municipal Regional Permit.

There is an existing domestic well located on the project site just south of the existing fence and residence (located on the northern part of the project site) and just southeast of the existing shed. This well is currently not in use and is planned to be capped.

FLOODING

Flood zone mapping by the Federal Emergency Management Agency (FEMA) indicated that the project site is prone to flooding near the Contra Costa Canal Ditch No. 2 (on the east side of the project site) and further discussion on FEMA mapping for the project site is attached as Appendix H. FEMA Flood Insurance Map, Community-Panel Number 06013C0283F and located in area designated as “Zone AE within the canal and Zone X (500 year floodplain)
outside of the channel.” FEMA categorizes a 1 percent annual flood (100-year flood) or “base flood” as a flood that has a 1 percent chance of being equaled or exceeded in any given year. The flood zone AE is an area in which base flood elevations have been determined. Flood zone X areas are areas of minimal flooding, which are outside of the Special Flood Hazard Areas and higher than the elevation of the 0.2 percent annual chance of flood (also known as the 500-year flood) (FEMA, 2009). There are no off-site areas draining onto the project site. The site drains by overland flow either to the existing flood control canal or the existing drainage ditch along the southeast side of Risdon Road.

In the early 1950’s, CCCFCD was formed to provide flood protection. A series of flood control channels and ditches were constructed beginning in the early 1950’s to protect structures and the City. CCCFCD’s Ditch Number 2 runs through the project site on the east side. Ditch No. 2 was constructed sometime between 1958 and 1968, according to an online database (HistoricAerials, 2015). The flow line of the canal is typically about nine feet below the adjacent grades. The slopes of the side of the canal are about 2:1 (horizontal: vertical). The total drainage area for Ditch No. 2 is 5.40 square miles. Where the canal crosses under Risdon Road and David Avenue, existing concrete drop structures limit the potential for erosion of the canal. The banks are currently vegetated with grasses and scattered trees. At the drop structures, there are approximately 20 feet of grouted riprap for the full height of the bank. An unpaved 22-foot wide service road is situated along the entire southwest side of the canal from Risdon Road to David Avenue and is located within the CCCFCD easement. The canal was be constructed by an excavation into the native soils and alluvium. There was no fill indicated during the October 14, 2014 (Appendix I) survey conducted by ENGEO, nor was instability indicated through borings.

3.9.2 IMPACT DISCUSSION

QUESTION A

STORMWATER

As discussed in Section 2.2, the Proposed Project has been designed to conform to the stormwater quality requirements of the City of Concord Design Review Application Checklist and the Contra Costa County Clean Water Program’s Stormwater C.3. Guidebook (C.3 Guidebook). Stormwater generated from the impervious surfaces of the Proposed Project would be treated via a bioswale that would run the length of the eastern boundary of the project site, adjacent to the CCCFCD easement. With project site design in compliance with the C.3 Guidebook which, when followed, provides for compliance with the Municipal Regional Permit and associated waste discharge requirements and adequately sized infrastructure (refer to Section 3.17 for the analysis of stormwater infrastructure), implementation of the Proposed Project and subsequent treatment of the waste generated by the new residences would not result in CCCSD violating the waste discharge requirements of the Municipal Regional Permit and water quality would not be significantly impacted. Less Than Significant.
WASTEWATER

Wastewater would be conveyed to the Central Contra Costa Sanitary District (CCCSD) Wastewater Treatment Plant in Martinez (WWTP) for treatment and disposal. The WWTP operates under an NPDES permit and associated waste discharge requirements issued by the San Francisco Bay Regional Water Quality Control Board (RWQCB) under order number R2-2012-0016 (Order) that prevent impacts to receiving water quality. The Order establishes numerical limitations for biological activity (carbonaceous biological oxygen demand), total suspended solids, oil and grease, pH, bacteria, copper, cyanide, dioxin-TEQ, acrylonitrile, Bis(2-ethylhexy) phthalate, and ammonia. The CCCSD treatment system was designed to handle residential waste and must satisfy the numerical requirements or the RWQCB has the authority to levy penalties, impose cease and desist orders, and issue moratoriums for new sewer service connections if waste discharge requirements are violated. The proposed residences would generate waste that is within the design parameters of the wastewater treatment facility and therefore would not introduce a new source of pollutants that could result in exceeding the numerical limitations. The addition of residential wastewater would not cause CCCSD to exceed wastewater treatment requirements as established by the Order to protect water quality (infrastructure capacity is assessed in Section 3.17); thus, a less-than-significant impact would occur. Less than significant.

QUESTION B

Potable water would be supplied through the City Public Works Department and no groundwater wells would be developed on site. The existing on-site well would be capped and could no longer be used. Minimal increase in consumption of surface water resources attributable to the eight new residential units would result from the Proposed Project. Less-Than Significant.

QUESTION C AND D

The Proposed Project would not significantly alter the drainage patterns existing on the project site or surrounding area as there would be minimal grading and the existing drainage pattern would be kept in the same direction (easterly). There would be a minimal impact on erosion and siltation through the development of the bioswale and “green space” as a buffer between the development and the CCCFCD canal. In addition, the storm water generated under the Proposed Project would drain to the City’s municipal system, consistent with existing conditions. Accordingly, the Proposed Project would not alter the existing drainage pattern or the site or area through alteration of or course of a stream, river, or substantially increase the amount of runoff which would result in flooding. Less Than Significant.

QUESTION E

The project site would contain a bioswale area that will convey runoff and reduce runoff pollutants from the developed impervious areas preventing runoff generated by the new impervious surfaces of the Proposed Project from entering the CCCFCD channel Ditch No.2. According to pre- and post-development runoff calculations submitted by the Applicant to the City, the bioswale would also reduce the Proposed Project’s peak stormwater flow rate to a level below the existing peak stormwater runoff rate at the project site. Accordingly, the Proposed Project would not create runoff water which would exceed the capacity of existing or planned...
stormwater drainage systems (Parsons, 2015.) Refer to Question A regarding the storm water quality of runoff generated by the Proposed Project. **Less than Significant.**

QUESTION F
The Proposed Project would not cause a degradation of water quality due to the design features incorporated into the Proposed Project specifically to address stormwater quality. The final design of the Proposed Project includes a bioswale area to reduce runoff and water quality issues, as well as grading implementations to reduce runoff on impervious surfaces. **No Impact.**

QUESTION G AND H
The Proposed Project would not place housing in a 100-year flood hazard zone area. As stated above, the project site is located in area designated as “Zone AE within the canal and Zone X (500 year floodplain) outside of the channel.” Zone AE corresponds to the ability of the channel to contain the a 500 year flood event resulting in the areas outside of the canal being designed as being located outside of a 500 year flood plain (Zone X). Accordingly, with all construction activity proposed within the Zone X or zone outside of the 500-year floodplain, there would be no structures which would impede or redirect flood flows as a result of the Proposed Project. **No Impact.**

QUESTION I
The Proposed Project would not expose people or structures to a significant risk of loss, injury, or death involving flooding, including the failure of a dam or levee as there are no dams or levees upstream or on the project site. **No Impact.**

QUESTION J
There are no tsunami inundation areas in the Walnut Creek Quadrangle where the project site is located. The closest tsunami inundation is in the Benicia Quadrangle, located northwest of the project site. The project site is not located adjacent to a lake nor is the portion of the Bay susceptible to seiche. The project site is located in an area with generally flat topography. Because there are no drastic changes in elevation, there are no risks of mudflows onto the project site or as a result from development of the Proposed Project. The Proposed Project would not cause inundation by seiche, tsunami, or mudflow. **No Impact.**
3.10 LAND USE AND PLANNING

Would the project:

<table>
<thead>
<tr>
<th>Potentially Significant Impact</th>
<th>Less-Than-Significant with Mitigation Incorporation</th>
<th>Less-Than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
</table>

a) Physically divide an established community?

b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to, the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?

c) Conflict with any applicable habitat conservation plan or natural community conservation plan?

3.10.1 ENVIRONMENTAL SETTING

Single-family residential is the most significant land use within the city limits according to the land use designation. The project site is not within the boundaries of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or any other conservation plan.

3.10.2 REGULATORY SETTING

The Development code defines zoned residential areas as RR, RS, RL, RM, and RH. The project site is located on RS7. The RS District is applied to areas of the City appropriate for single-family residential uses in neighborhoods at densities of 2.5 to 10 units per net acre, subject to appropriate standards. The RS zoning districts generally apply to the single family residential districts with development existing at the time of the adoption of the Development Code on July 24, 2012. The specific allowable density for each parcel is shown on the Zoning Map by a numerical suffix residential density designator (RS-12, RS-10, RS-8, RS-7.5, RS-7, and RS-6) corresponding to the minimum lot size (12,000, 10,000, 8,000, 7,500, 7,000, 6,000 square feet, respectively. The RS District is consistent with and implements the Low Density Residential (LDR) land use designation of the General Plan.

The proposed rezone if selected by the Applicant would be RL (Residential Low Density): The RL District is applied to areas of the City appropriate for low density residential uses in a neighborhood with predominately detached single-family dwellings, but allows a diversity of compatible housing types and lot sizes from larger lot single-family dwellings to cottages, cluster, courtyard, and patio homes, and duplexes, at densities of 2.5 to 10 units per net acre. The RL District requires a minimum of 1,920 square foot lot area and is consistent with and implements the LDR land use designation of the General Plan.
3.10.3 IMPACT DISCUSSION

QUESTION A
The project site currently consists of residential land use, although a majority of the project site is undeveloped. Implementation of the Proposed Project would be a continuation of the surrounding residential development. Implementation of the Proposed Project would not impact the transportation network nor establish a barrier for residents to move amongst the community. Although, the Proposed Project would not physically divide an established community, implementation would result in the elimination of the exclusive 20-foot roadway and utility easement centered on the southwest property line. The easement is not currently utilized and therefore removal would result in a less-than-significant impact to land use. Less Than Significant.

QUESTION B
The 2030 General Plan designation for the project site is Low Density Residential (LDR). With the project’s proposal for eight on-site units on a 2.02-acre site, the resulting unit density of 10 units per acre would comply with the 2030 General Plan Designation density range (2.5 to 10).

Under the development code, the project site is currently zoned as RS-7 requiring minimum net lot sizes of 7,000 square feet. The net lot size excludes rights of ways and other environmental or development constraints such as the proposed access lane and the 72-foot CCCSD easement on the project site. Implementation of the Proposed Project would result in the development of net lot sizes ranging from 3,653 feet to 6,779 feet. Therefore, the Proposed Project would not comply with the existing zoning. Accordingly, the Applicant is requesting a rezone of the project site as part of the Proposed Project, which has been designed to be consistent with the RL zoning and associated development requirements as described in Section 2.2. In accordance with Section 18.455.070 of the Development code, the rezoning may only be approved if all of the following applicable findings are made:

1. The proposed amendment is consistent with the general plan.
2. The proposed amendment would not be detrimental to the public interest, health, safety, convenience, or welfare of the city.
3. Zoning map amendments shall also find that the affected site is physically suitable, including absence of physical constraints, access, compatibility with adjoining land uses, and provision of utilities, for the requested zoning designation and proposed or anticipated uses and/or development.

As stated above, the resulting unit density of the Proposed Project of 10 units per acre is consistent with the 2030 General Plan Low Density Residential land use designation of the project site. As shown in Figure 4, the rendition of the Proposed Project indicates that the lot alignments and home orientations would be compatible and well integrated with the existing neighborhood and would not be detrimental to the public interest, convenience, or welfare of the City. For example, the proposed homes would align with the residential units along the western
border of the project site. Within an area similar to that of the Proposed Project, the RS-7 district supports development of six residential units. The variance to the RS-7 zoning district requested by the Applicant would result in the development of eight residential units. The increase in density of two additional homes in the same general housing area within the existing zoning district would be well integrated into the neighborhood and would not appear to result in an obvious clustering of homes inconsistent with the existing zoning requirements. Furthermore, the development would not interfere with the flood protection provided by the CCCSD canal located along the eastern boundary of the project site and the proposed development includes an emergency services vehicle turn-around area between lots 6 and 7 for ease of access. All public service and utility amenities would be easily accessible and development would not endanger, jeopardize, or otherwise constitute a hazard to the public. With the inclusion of the private easement to allow development of the access road, and with the dedication of the right-of-way of the project frontage along the northern border of the project site, implementation of the Proposed Project would provide additional parking amenities to the neighborhood as well as improve pedestrian safety through the widening of Risdon Road and the associated development of sidewalks. With the proposed rezoning, the Proposed Project would comply with regulations and policies related to the new designations or development requirements and would meet the findings required for approval of the rezone in accordance with the Development code. Accordingly, implementation of the Proposed Project would result in a less-than-significant impact to the applicable land use plan, policy, or regulation. **Less Than Significant.**

QUESTION C

There will be no conflicts with any applicable habitat conservation plan or natural community conservation plan. **No Impact.**
3.11 MINERAL RESOURCES

Would the project:

<table>
<thead>
<tr>
<th>a) Result in the loss of availability of a known mineral resource that would be of future value to the region and the residents of the State?</th>
<th>Potentially Significant Impact</th>
<th>Less-Than-Significant with Mitigation Incorporation</th>
<th>Less-Than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☒</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?</th>
<th>Potentially Significant Impact</th>
<th>Less-Than-Significant with Mitigation Incorporation</th>
<th>Less-Than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☒</td>
</tr>
</tbody>
</table>

3.11.1 ENVIRONMENTAL SETTING

The project site is not currently being mined nor does it have a known valuable mineral resource (California Department of Natural Resources, 2015). The project site is not a main access point for any other mined resources in the area. Mineral and aggregate resources exist in areas on the southern limits of the City. Access to these resources is restricted by existing developed areas in residential neighborhoods and commercial developments along with existing roadways.

3.11.2 IMPACT DISCUSSION

QUESTIONS A AND B

Based on the lack of valuable mineral resources on the project site, the Proposed Project will not result in the loss of availability of a known mineral resource that would be of future value to the region and residents of the state, nor would it result in the loss of availability of a locally important mineral resource recovery site. **No Impact.**
3.12 NOISE

Would the project result in:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less-Than-Significant with Mitigation Incorporation</th>
<th>Less-Than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Exposure of persons to, or generation of, noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Exposure of persons to, or generation of, excessive groundborne vibration or groundborne noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing in or working in the project area to excessive noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>f) For a project within the vicinity of a private airstrip, would the project expose people residing in or working in the project area to excessive noise levels?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

3.12.1 ENVIRONMENTAL SETTING

The major existing noise source in Concord is vehicle traffic, including the Bay Area Rapid Transit (BART) system which is located approximately 250 feet south of the project site. The BART tracks are elevated and noise from BART tends not to be amplified towards the project site, however the BART train does cause light vibrations and a low-toned noise that can be heard from all the way to the north end of the project site. To the north, east, and west of the project site, the main sources are from residential and neighborhood daily noise.

A noise survey was conducted on April 30, 2015 at three locations on the project site (Figure 6). The first reading (Site A) was taken on the northern part of the project site on the driveway of the existing abandoned residence, the second reading (Site B) was taken near the center of the project site just south of a set of large trees, and the last reading (Site C) was taken on the southern side of the project site. Readings were taken between 10:15 a.m. and 11:10 a.m.
Figure 6
Noise Monitoring Sites
The ambient noise levels were found to be between 47.6 and 49.2 A-weighted decibels (dBA). A-weighted decibels are an expression of the relative loudness of sounds in air as perceived by the human ear; equipment is corrected to reduce readings of low frequencies. This correction is made because the human ear is less sensitive at low audio frequencies, especially below 1000 Hz, than at high audio frequencies. Due to the surrounding land uses of residential streets and residences, ambient noise levels would not vary significantly during the day. The BART approximately 250 feet south of the Proposed Project site is the main source for noise. The BART runs every 15 minutes and on average for 20 hours each day (weekends run different hours), an evening noise monitoring is not expected to produce dissimilar results. A table with each site noise monitoring detail is listed below:

Table 4

<table>
<thead>
<tr>
<th>Site</th>
<th>Date (2015)</th>
<th>Start Time</th>
<th>End Time</th>
<th>Noise Source</th>
<th>Receptor</th>
<th>Measure Noise Level (dBA Leq)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>April 30</td>
<td>10:15am</td>
<td>10:30am</td>
<td>Risdon Road, Residences, BART</td>
<td>Residential</td>
<td>49.2</td>
</tr>
<tr>
<td>B</td>
<td>April 30</td>
<td>10:35am</td>
<td>10:50am</td>
<td>Risdon Road, Residences, BART</td>
<td>Residential</td>
<td>48.3</td>
</tr>
<tr>
<td>C</td>
<td>April 30</td>
<td>10:54am</td>
<td>11:09am</td>
<td>Risdon Road, Residences, BART</td>
<td>Residential</td>
<td>47.6</td>
</tr>
</tbody>
</table>

1) All measurements are A-Weighted.

SENSITIVE NOISE RECEPTORS

Some land uses are considered more sensitive to noise than others due to the amount of noise exposure (in terms of both exposure duration and insulation from noise) and the types of activities typically involved. Residences, motels and hotels, schools, libraries, churches, hospitals, nursing homes, auditoriums, and parks and other outdoor recreation areas generally are more sensitive to noise than commercial and industrial land uses. A sensitive receptor is defined as any living entity or aggregate of entities whose comfort, health, or well-being could be impaired or endangered by the existence of noise.

The closest sensitive receptor is located approximately 10 feet from the project site boundary on the west side and approximately 20 feet from the extent of planned grading. This sensitive receptor is a residence where the existing homeowner has built an addition onto the exclusive 20-foot roadway and utility easement centered on the southwest property line (closer to the project site) than the other homeowners surrounding the project site (Sheet 10 of Appendix B). The next closest sensitive receptor on the west side of the project site is located approximately 35 feet from the extent of the planned grading area.

CITY OF CONCORD NOISE RESTRICTIONS

City Municipal Code section 8.25020(1)(y) restricts the hours that construction work can take place to reduce noise impacts on the public near construction projects. Allowed construction times are Monday-Friday 7:30a.m. until 6:00p.m. and 8:00a.m. until 5:00p.m. on the weekends. Construction activities will not take place outside of the allowed hours unless otherwise
indicated on the use permit or building permit or imposed under an environmental mitigation and monitoring program.

3.12.2 IMPACT DISCUSSION

QUESTION A
During construction, the Proposed Project would expose persons to noise levels in excess of standards established in the local general plan. The duration of the construction would be reduced as all houses will be completed in one phase and as discussed in Section 2.2, construction would be limited to the times provided in the Municipal Code. Noise impacts resulting from construction would depend on: 1) the noise generated by various pieces of construction equipment; 2) the timing and duration of noise generating activities; 3) the distance between construction noise sources and noise sensitive receptors; and 4) existing ambient noise levels.

As discussed in Section 2.2.7, construction contractors are required use power construction equipment with state-of-the-art noise and muffling devices. All internal combustion engines used on the Proposed Project shall be equipped with adequate mufflers and shall be in good mechanical condition to minimize noise created by faulty or poorly maintained engines or other components. Construction contractors shall locate stationary noise generating equipment as far as possible from sensitive receptors.

As stated in Section 2.0 under Landscaping, a privacy fence would be installed on the west and south sides of the project site to buffer noise generated from construction and operational sources. A five-foot buffer planter strip would also be installed and implemented with fast-growing shrubs and trees to decrease noise sources from construction and operation of the Proposed Project.

Post-construction would not expose persons to noise levels in excess of standards established in the local general plan. The Proposed Project would occur only between the allowed hours for any on-site or off-site work. Ambient noise levels would be consistent with the local surroundings of residential noise. Less Than Significant.

QUESTION B
The Proposed Project would not expose persons to excessive ground borne vibrations or ground borne noise levels. Generally, excessive vibration is only an issue when construction requiring the use of equipment with high vibration levels (i.e., compactors, large dozers, etc.) occurs within 25 to 100 feet of an existing structure. Impact pile driving, which typically produces the highest vibration levels, is not anticipated to occur. No pile drivers, blasting, or major earthmoving with large dozers would take place during construction. All equipment, as stated in Section 2.0, would be considered standard construction equipment would not produce substantial vibration of the project areas. Given the infrequent use of heavy equipment and the distance to the nearest sensitive receptor, exposure to groundborne vibration from construction activities would be minimal.
Operation of the Proposed Project would not create groundborne vibration. There would be no post-construction ground borne vibrations caused by the Proposed Project as single-family residences surround the project site and only single-family residences would be built and the impact would be less than significant. **Less Than Significant.**

QUESTION C
The Proposed Project consists of an eight-house subdivision which is consistent with the surrounding residential land uses and would not substantially increase the permanent ambient noise levels in the project vicinity above existing levels. As described in Section 2.2, a privacy fence 6 feet high with an addition 1.5 feet of decorative lattice for a total of 7.5 feet-high would be constructed on the south, west and partially north side of the project site to reduce impacts of permanent noise sources. Landscaping would be consistent with all surrounding landscaping and would be also used as a sound buffer. The southernmost house would be fixed with triple-paned windows and added insulation and thicker walls to reduce sound from the BART system. **Less than Significant.**

QUESTION D
There would be a temporary increase in ambient noise levels in the project vicinity during the construction phase of the Proposed Project. Refer to the discussion under Question A concerning construction noise. Development of the Proposed Project would result in noise levels and durations consistent with the existing residential setting. **Less Than Significant.**

QUESTIONS E AND F
The Proposed Project is not located within an airport land use plan or within two miles of a public airport, public use airport or a private airstrip exposing people residing in or working in the project area to excessive noise levels. The closest airport is Buchannan Field Airport located approximately 4.3 miles north of the project site. **No Impact.**
3.13 POPULATION AND HOUSING

Would the project:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less-Than-Significant with Mitigation Incorporation</th>
<th>Less-Than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>Induce substantial population growth in an area either directly (e.g., by proposing new homes and businesses) or indirectly (e.g., through extension of roads or other infrastructure)?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.13.1 ENVIRONMENTAL SETTING

The City had a population of 122,067 in 2010, and Contra Costa County had a population of 1,049,025, with a projection for 2015 of 125,826 and 1,085,733 respectively (U.S. Census, 2010). There were an estimated 44,878 households within the City in 2010, with an approximate 2.73 persons per household (U.S. Census, 2010). According to the Regional Housing Needs Allocation, between 2014 and 2022 the City needs an additional 2,236 homes for moderate to above moderate income households (City of Concord, 2014).

3.13.2 IMPACT DISCUSSION

QUESTIONS A THROUGH C

Based on the conservative assumption that each of the 8 single family residences will house 1 standard family of 5 individuals, there will be an estimated maximum population increase of 40 individuals as a result of the Proposed Project. The Proposed Project would not induce substantial population growth in the area directly or indirectly. Removing one residence to develop eight would not constitute displacement of a substantial number of existing housing units or people necessitating the construction of housing elsewhere. The Proposed Project assists the City in meeting the Regional Housing Needs Allocations. **No Impact.**
3.14 PUBLIC SERVICES

Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service rations, response times or other performance objectives for any of the public services:

<table>
<thead>
<tr>
<th></th>
<th>Potentially Significant Impact</th>
<th>Less-Than-Significant with Mitigation Incorporation</th>
<th>Less-Than-Significant Impact</th>
<th>No Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Fire protection?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>b) Police protection?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>c) Schools?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>d) Parks?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>e) Other public facilities?</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

3.14.2 ENVIRONMENTAL SETTING

The project site is located in a residential area that is served by the Contra Costa Police Department. The City of Concord is divided into six beats of patrolling areas. The project site is located in the third beat and is normally patrolled by one or two officers. Each beat consists of an approximate 22,000 citizens. Between January 1, 2015 and April 6, 2015 there have been 51 service calls in beat #3 (CPD, 2015).

The nearest Fire Department Station to the project site is the Contra Costa Fire Training Center on Treat Boulevard which is an active fire station with up to 4 engines working at any given time. Treat Boulevard is approximately 0.9 miles south of the project site and response time is approximately five minutes for emergency calls (CPD, 2015).

The project site is located in the Mt. Diablo Unified School District, the 23rd largest school district in the State has an approximate 33,977 students attending (Niche, 2015). This District is composed of 31 elementary schools, 9 middle schools, 5 high schools, and 19 alternative schools and programs. Table 5 lists the closest schools to the project site of which none have been reported as being overcrowded.

The closest city park, Ygnacio Valley Park, is located approximately 0.22 miles east of the project site. Ygnacio Valley Park is located at the northeast corner of Oak Grove Road and David Avenue. The total area of the park is 9.5 acres consisting of ball fields, jogging paths, picnic and barbeque facilities, and is a popular children’s play area with a large expanse of turf for free play.
TABLE 5
NEARBY SCHOOLS

<table>
<thead>
<tr>
<th>School</th>
<th>Location Relative to the Project Site (miles)</th>
<th>Within Mt. Diablo Unified School District?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ygnacio Valley Elementary</td>
<td>0.75 Northeast</td>
<td>Yes</td>
</tr>
<tr>
<td>Woodside Elementary</td>
<td>2.0 East</td>
<td>Yes</td>
</tr>
<tr>
<td>Oak Grove Middle</td>
<td>0.6 South</td>
<td>Yes</td>
</tr>
<tr>
<td>Ygnacio Valley High</td>
<td>3.0 Southeast</td>
<td>Yes</td>
</tr>
<tr>
<td>De La Salle High</td>
<td>2.0 South</td>
<td>No</td>
</tr>
</tbody>
</table>

3.14.2 IMPACT DISCUSSION

QUESTIONS A THROUGH E

The Proposed Project would not result in an increase in the use of public services that would result in the need for new or physically altered government facilities, the construction of which could impact the environment. With the development of eight residences, construction and operation of the Proposed Project would not cause significant impacts to service ratios, response times, or other performance objectives to fire protection, police protection, parks, or other public facilities in the area. Assuming each of the eight residences would house a family of five, three of those individuals are assumed to be school-aged children. Therefore, a conservative assumption would be that implementation of the Proposed Project would result in the addition of 24 children to the nearby schools. **Less Than Significant.**
3.15 RECREATION

Would the project:

a) Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated? □ □ □ ☒

b) Include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment? □ □ □ ☒

3.15.1 ENVIRONMENTAL SETTING

As previously discussed, Ygnacio Valley Park is the closes park to the project site. Len Hester Park is located approximately 0.90 miles west of the project site and approximately 1.6 miles driving/walking distance. Len Hester Park is composed of 9.5 acres of gently rolling terrain with lawn and trees suitable for children’s play, walking, jogging, and has several picnic areas located throughout.

3.15.2 IMPACT DISCUSSION

QUESTION A AND B

Assuming 40 new individuals would inhabit the neighborhood after development, with over 9.5 acres of parks within 0.90 miles of the project site, the Proposed Project would not increase the use of existing neighborhood parks or recreational facilities such that a substantial accelerated physical deterioration of the 9.5 acres of facilities would occur. There would be no recreational facilities included in the Proposed Project, nor would it require expansion of recreational facilities that may have an adverse physical effect on the environment. **No impact.**
3.16 TRANSPORTATION AND CIRCULATION

Would the project:

a) Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit? ☐ ☐ ☒ ☐

b) Conflict with an applicable congestion management program, including, but not limited to level-of-service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways? ☐ ☐ ☒ ☐

c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks? ☐ ☐ ✗ ☐

d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)? ☐ ☐ ☒ ☐

e) Result in inadequate emergency access? ☐ ☐ ✗ ☐

f) Conflict with adopted policies regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance of such facilities? ☐ ☐ ✗ ☐

3.16.1 ENVIRONMENTAL SETTING

Roadways are the primary existing transportation facilities within the City. The existing roadway network near the project site consists of local streets. Existing bicycle, pedestrian, and transit facilities are also present in the city and are located within 0.25 miles of the project site. Major roadways within the city limits are Interstate 680, State Routes 4 and 242, Willow Pass Road, Clayton Road, Monument Boulevard, Ygnacio Valley Road, Concord Avenue, and Treat Boulevard. Transit service in Concord is provided by County Connection bus and two BART
stations within the City which connect via the BART tracks located just south of the project site within 250 feet.

The Buchanan Field Airport is located on Sally Rise Drive approximately 4.3 miles north of the project site. The Buchanan Field Airport has an average of 225 operations per day and 392 aircraft that are based there (FlightAware.com, 2015).

Risdon Road boarders the project site to the north. Risdon Road narrows from its connection to Faned Way heading east towards the project site. This narrowing does not allow for adequate public parking along the side of the road, nor does it provide a safe pedestrian environment. The Proposed Project will widen this section of Risdon Road from the current 44 feet to 49 feet. There will be a dedicated 1,050 square foot right-of-way to the City adjacent to the project site and Risdon Road. This right-of-way will allow pedestrians to walk along Risdon Road safely. All gutter and curb infrastructures will be per City standards, with an open curb every 12 feet on center to allow for surface drainage to the CCCFCD facilities.

Regional access to the project site is provided via Monument Boulevard to the north and Treat Boulevard to the south of the project site. Both provide access from SR 242/Interstate 680 to Oak Grove Avenue hence Risdon Road and the project site. The Pittsburg/Bay Point BART line provides access from Pittsburg in the East Bay to Millbrae in the southern portion of the San Francisco Peninsula in San Mateo County.

To avoid an inadequate access for emergency vehicles, the Proposed Project contains a fire engine/ emergency services turn-around area located between the residences of #6 and #7 which is a standard size under the City’s planning division.

3.16.2 REGULATORY SETTING

The City follows guidelines under the 2011 Contra Costa Congestion Management Program (CMP), which requires every jurisdiction to conduct a traffic impact analysis for any proposed development project, development plan, or General Plan Amendment that would generate more than 100 vehicle trips in the peak hour (Page v, CCTA, 2013). Under the CMP, and using the highest trip generation rate published by the Institute of Transportation Engineers for P.M. peak hour trips generated by single-family detached homes (2.98 trips per residence), the addition of eight new residences would result in the addition of approximately 24 weekday P.M. peak hour vehicle trips to the existing roadways (ITE, 2008) and therefore does not warrant the development of a traffic impact study and impacts to levels of services are assumed to be less than significant.

3.16.3 IMPACT DISCUSSION

QUESTIONS A, B, AND F

The Proposed Project and associated development of eight homes within an area designed in the General Plan and Zoning Ordinance for residential development would not conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking in account all modes of transportation including mass transit.
and non-motorized travel and relevant components of the circulation system including, but not limited to, intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit. The Proposed Project would not conflict with an applicable congestion management program including level-of-service standards and travel demand measures, or other standards established by the county due to the low number of new units that would be developed. As discussed above, the Proposed Project will increase safety and traffic flow by widening Risdon Road where it connects with the project site. **Less Than Significant.**

QUESTIONS C THROUGH E

The Proposed Project will not result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks. There would not be a substantial increase in hazards due to a design feature or incompatible uses with the Proposed Project. There would not be a result of inadequate emergency vehicle/service access due to the Proposed Project, as stated above, the implemented designs allow for a turn-around for emergency medical and service vehicles and personnel. **No Impact.**
3.0 ENVIRONMENTAL CHECKLIST

3.17 UTILITIES AND SERVICE SYSTEMS

Would the project:

- **a)** Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board? [] [] [] [x]

- **b)** Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental impacts? [] [] [] [x]

- **c)** Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental impacts? [] [x] [] []

- **d)** Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed? [] [] [x] []

- **e)** Result in a determination by the wastewater treatment provider that serves or may serve the project that it has adequate capacity to serve the project’s projected demand in addition to the provider’s existing commitments? [] [] [x] []

- **f)** Be served by a landfill with sufficient permitted capacity to accommodate the project’s solid waste disposal needs? [] [] [x] []

- **g)** Comply with federal, state, and local statutes and regulations related to solid waste? [] [] [x] []

3.17.1 ENVIRONMENTAL SETTING

CCCSD permits, inspects and treats wastewater discharged by the business and residences of Concord. Wastewater within CCCSD is primarily conveyed to the Central Contra Costa Sanitary District Treatment Plant (CCCSDTP) through pipes by the force of gravity. Located in Martinez, the plant has a treatment capacity of 54 million gallons per day (mgd) and 240 mgd of wet weather flow. The facility is staffed 24 hours a day, 365 days a year. Wastewater moves through the District’s 1,500 miles of sewer lines, finally arriving at the plant’s headworks to begin treatment. Most of the wastewater is treated to a secondary level, disinfected by ultraviolet light, and then discharged into Suisun Bay. Approximately 600 million gallons per year are treated to
a tertiary level through additional filtration and disinfection before being distributed as recycled water for landscape irrigation, industrial processes, and plant operations (CCCSD, 2009).

Contra Costa Water District acts as the city’s water supplier, providing water supplies to the City municipal system from the Sacramento/ San Joaquin Delta. CCWD serves treated and raw water to central and eastern parts of the county.

According to the City Public Works Department, existing sewer lines at the intersection of Whitman Road and Getoun Drive, and Whitman Road and Oak Grove Road, are currently flowing at less than one-half and one-third, respectfully, of the pipes’ capacities.

The Concord Disposal Service handles the residential and commercial waste stream in the City of Concord, collecting both solid waste and recycled materials. All solid waste will go to the local landfill called Keller Canyon Landfill. The capacity is at approximately 63,400,000 cubic yards (or 85 percent) and is expected to last until year 2030 (PlaceWorks, 2014). Pacific Gas & Electric Company (PG&E) is the gas and electric provider for the project site. PG&E serves most of Contra Costa County.

3.17.2 REGULATORY SETTING

The City is responsible for most of the wastewater collection system, while treatment service is provided by the CCCSD. CCCSD has sufficient existing infrastructure capacity to provide wastewater treatment service to additional planned development that could be served by the City’s system. CCCSD’s effluent discharge limit would be sufficient to accommodate wastewater expected to be generated from currently planned growth within the Central service area. However, redevelopment projects within the City could eventually require an amendment to the National Pollution Discharge Elimination System (NPDES) permit to reflect higher effluent volumes. New wastewater collection lines will be needed to serve the Concord Reuse Project, and improvements to transmission mains and pumping stations in North Concord may also be needed. A growing percentage of the wastewater received at the CCCSD treatment plant is treated to a level high enough to enable its reuse for irrigation and other non-potable purposes within the service area.

In 2009, about 200 million gallons a year were treated at the plant and then recycled via a network of transmission facilities serving golf courses, parks, and other landscaped areas. CCCSD is exploring other ways to expand the use of reclaimed Concord 2030 water in order to be better prepared for drought and avoid future diversions of water from the Delta (General Plan, 2015).

3.17.3 IMPACT DISCUSSION

QUESTION A, B, AND E

The Proposed Project would not exceed wastewater treatment requirements as all regulations from the Regional Water Quality Control Board and associated permitted responsibilities of the CCSD will be followed and the development of eight homes would not result in permit upset conditions. With the addition of eight new residences, the Proposed Project would generate
approximately 6,410 gallons per day of wastewater, which accounts for 0.03 percent of the facility design flow (53,800,000 gallons per day). With an average daily flow rate of 30,400,000 gallons per day (Leavitt, 2015), adequate capacity remains at the treatment facility to serve the Proposed Project. Based on evidence from field inspections and observations of the wastewater conveyance system conducted by the City, it was determined that the Proposed Project’s wastewater generation rate of 0.01 cubic feet per second (cfs) would not adversely impact the sanitary sewer system because of the observed available capacity within the system (approximately 29% available capacity in the smaller of the conveyance pipelines) (Parsons, 2015). The Proposed Project would not result in the need for a new water or wastewater treatment facilities or expansion of existing facilities. The existing wastewater treatment facility has adequate capacity to serve the Proposed Project’s projected demand and existing obligations. **Less Than Significant.**

QUESTION C

According to City Public Works, the 33-inch storm drain which would receive the storm water generated by the Proposed Project after traversing through the bioswale has adequate capacity and no new municipal facilities would be required to serve the Proposed Project. **Less Than Significant.**

QUESTION D

According to a personal confidential communication with CCSD, there are sufficient water supplies available to serve the Proposed Project from existing entitlements. Accordingly no new facilities or new or expanded entitlements would be needed to meet the water demands of the Proposed Project. **No Impact.**

QUESTION F AND G

The Proposed Project will comply with all federal, state, and local statutes and regulations related to solid waste. The project site is within the service area of the Concord Disposal Service and all solid waste is taken to the Keller Canyon Landfill. The landfill is expected to have available capacity through the year 2030. Utilizing the most conservative daily solid waste generation rate published by CalRecycle (CalRecycle, 2015), each residence is anticipated to generate approximately 12.23 pounds of solid waste per household per day; resulting in a total daily solid waste generation rate of approximately 98 pounds per day for the Proposed Project. With a remaining permitted capacity over 63,000,000 cubic yards, the generation of 98 pounds of solid waste per day (which is roughly equivalent to 1.0 cubic yard of paper and cardboard) from the Proposed Project would not result in the exceedance of the landfill’s permitted capacity. **Less Than Significant.**
3.18 MANDATORY FINDINGS OF SIGNIFICANCE

Would the project:

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)

c) Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly?

3.18.1 IMPACT DISCUSSION

QUESTION A

As discussed in the preceding sections, the Proposed Project has a potential to create short term impacts which could degrade the quality of the environment by adversely impacting biological resources and cultural resources. However, with implementation of the identified mitigation measures, potential impacts would be reduced to a less-than-significant level. The long term effect of the Proposed Project is the overall safety improvement of the site as well as meeting the City’s Regional Housing Needs Allocations. Less Than Significant With Mitigation.

MITIGATION MEASURES

Bio-1 A qualified biologist shall conduct a pre-construction bird survey for nesting birds within 14 days prior to commencement of construction activities if anticipated to commence during the appropriate nesting season (between February 1 and August 31). The qualified biologist shall document and submit the results of the pre-construction survey in
a letter to CDFW and the City within 30 days following the survey. The letter shall include: a description of the methodology including dates of field visits, the names of survey personnel, a list of references cited and persons contacted, and a map showing the location(s) of any bird nests observed on the project site. If no active nests are identified during the pre-construction survey then no further mitigation is required. Evidence, in the form of a letter report documenting the results of the survey, shall be submitted to the City Planning Department prior to commencement of construction activities.

Bio-2 If any active nests are identified during the pre-construction survey within the project site, a buffer zone will be established around the nests. A qualified biologist will monitor nests weekly during construction to evaluate potential nesting disturbance by construction activities. The biologist will delimit the buffer zone with construction tape or pin flags within 250 feet of the active nest and maintain the buffer zone until the end of the breeding season or until the young have fledged. Guidance from CDFW will be requested if establishing a 250-foot buffer zone is impractical. Guidance from CDFW will be requested if the nestlings within the active nest appear disturbed.

Bio-3 Trees anticipated for removal should be removed outside of the nesting season (February 1 and August 31). If trees are anticipated to be removed during the nesting season, a pre-construction survey shall be conducted by a qualified biologist. If the survey shows that there is no evidence of active nests, then the tree shall be removed within ten days following the survey. If active nests are located within trees identified for removal, a 250-foot buffer shall be installed around the tree. Guidance from CDFW will be requested if the 250-foot buffer is infeasible.

QUESTION B
Potential adverse environmental impacts of the Proposed Project, in combination with the impacts of other past, present, and future projects, would not contribute to cumulatively significant effects on the environment with implementation of the above-mentioned mitigation measures. **Less Than Significant With Mitigation.**

MITIGATION MEASURES

Biological Resources

Bio-1 A qualified biologist shall conduct a pre-construction bird survey for nesting birds within 14 days prior to commencement of construction activities if anticipated to commence during the appropriate nesting season (between February 1 and August 31). The qualified biologist shall document and submit the results of the pre-construction survey in a letter to CDFW and the City within 30 days following the survey. The letter shall include: a description of the methodology including dates of field visits, the names of survey personnel, a list of references cited and persons contacted, and a map showing the location(s) of any bird nests observed on the project site. If no active nests are identified during the pre-construction survey then no further mitigation is required. Evidence, in the form of a letter report documenting the results of the survey, shall be
submitted to the City Planning Department prior to commencement of construction activities.

Bio-2 If any active nests are identified during the pre-construction survey within the project site, a buffer zone will be established around the nests. A qualified biologist will monitor nests weekly during construction to evaluate potential nesting disturbance by construction activities. The biologist will delimit the buffer zone with construction tape or pin flags within 250 feet of the active nest and maintain the buffer zone until the end of the breeding season or until the young have fledged. Guidance from CDFW will be requested if establishing a 250-foot buffer zone is impractical. Guidance from CDFW will be requested if the nestlings within the active nest appear disturbed.

Bio-3 Trees anticipated for removal should be removed outside of the nesting season (February 1 and August 31). If trees are anticipated to be removed during the nesting season, a pre-construction survey shall be conducted by a qualified biologist. If the survey shows that there is no evidence of active nests, then the tree shall be removed within ten days following the survey. If active nests are located within trees identified for removal, a 250-foot buffer shall be installed around the tree. Guidance from CDFW will be requested if the 250-foot buffer is infeasible.

Cultural Resource Impacts

CR-1 Stop Potentially Damaging Work if Archaeological Resources Are Uncovered During Construction, Assess the Significance of the Find, and Pursue Appropriate Management. If previously unrecorded cultural resources (e.g., unusual amounts of shell, animal bone, bottle glass, ceramics, structure/building remains, etc.) are encountered during surveys of previously unexamined area where ground disturbance is planned or during project-related ground-disturbing activities, all ground-disturbing activities shall be halted within a 100-foot radius of the find. A qualified professional archaeologist shall identify the materials, determine their possible significance, and formulate appropriate measures for their treatment, which shall be implemented by the project applicants and their contractors. Potential treatment methods for significant and potentially significant resources may include, but would not be limited to avoidance of the resource through changes in construction methods or project design or implementation of a program of testing and data recovery, in accordance with all applicable federal and state requirements.

CR-2 Stop Potentially Damaging Work if Human Remains Are Uncovered During Construction, Assess the Significance of the Find, and Pursue Appropriate Management. California law recognizes the need to protect interred human remains, particularly Native American burials and items of cultural patrimony, from vandalism and inadvertent destruction. The procedures for the treatment of discovered human remains are contained in California Health and Safety Code §7050.5 and §7052 and California Public Resources Code §5097. In accordance with the California Health and Safety Code, if human remains are uncovered during ground-disturbing activities, all such activities within a 100-foot radius
of the find shall be halted immediately and the project applicants’ designated representative shall be notified. The project applicants shall immediately notify the county coroner and a qualified professional archaeologist. The coroner is required to examine all discoveries of human remains within 48 hours of receiving notice of a discovery on private or state lands (Health and Safety Code Section 7050.5[b]). If the coroner determines that the remains are those of a Native American, he or she must contact the NAHC by phone within 24 hours of making that determination (Health and Safety Code Section 7050[c]). The project applicant or its appointed representative and the professional archaeologist shall contact the Most Likely Descendent (MLD), as determined by the NAHC, regarding the remains. The MLD, in cooperation with the property owner and the lead agencies shall determine the ultimate disposition of the remains.

QUESTION C

After the implementation of design features, municipal code requirements, and standard conditions of approval, there would be no environmental effects caused by the Proposed Project that will cause a substantial adverse effect on human beings, either directly or indirectly. **Less Than Significant.**
SECTION 4.0 – PREPARERS

ANALYTICAL ENVIRONMENTAL SERVICES

Project Manager Trenton Wilson
Deputy Project Manager Kassandra Dickerson
Technical Staff Erin Quinn, Air Quality Specialist
 Charlane Gross, Archaeologist
 Peter Bontadelli, Senior Biologist
 Nicholas Bonzey, Biologist
 Dana Hirschberg, Senior Graphics Specialist
 Glenn Mayfield, Graphics Specialist
SECTION 5.0 – REFERENCES CITED

Leavitt, Russell; 2015. Engineering Assistant III, Contra Costa County Central Sanitation Department, Wastewater Treatment Phone conversation on 8/6/2015 regarding capacity and average daily flows.

Parsons, Jim 2015. Email communication dated September 2, 2015 regarding the Autumn Brook Sewer Conclusion 13019-11-0340. Received September 2, 2015 at 9:32 A.M.

Tree Preservation Report
Autumn Brook Development
1890 Risdon Road
Concord, CA

Prepared for:
Zheng Tan
Property Owner

By
John C Traverso
BCMA Arborist #0206-B
Autumn Brook Tree Preservation

Table of Contents

Introduction.. 1
Assignment.. 1
Assumptions and Limitations. 1
Tree Inventory & Assessment Table.. 2
Discussion. 9

Recommendations

 Pre-construction.. 9
 Grading, Drainage, & Construction. 9
 Landscaping Phase.. 10

Attachments

 Tree Inventory & Protection Map (Grading & Drainage Plan)
 Tree Exhibit & Demolition Plan
 Preliminary Landscape Plan

John C Traverso, BCMA
Introduction
The applicants propose to build a subdivision consisting of 8 residential homes to be located off of Risdon Road just west of the Contra Costa County Flood Control Channel. The site is relatively level with a mixture of native and non-native trees, with the native trees located mostly around the perimeter of the property. A total of 42 trees were inventoried, and I anticipate that 18 of those trees will need to be removed to accommodate the proposed improvements. This report shall address the proposed tree encroachments, and make recommendations for tree preservation.

Assignment
Per the City of Concord’s Tree Protection Ordinance, this arborist report shall include the following.

1. Tag, identify, and measure trunk diameters of all “Protected Trees” at 4.5' above grade. Protected trees are the following listed native trees with a single trunk DBH of 12” or more, or a multiple trunk native tree with the aggregate DBH adding up to 12” or more: Blue Oak, Valley Oak, Coast Live Oak, California Bay, California Buckeye, and California Sycamore.

Or other tree species with a trunk diameter of at least 24” DBH (single trunk) or a multi-stemmed tree where the sum of all stems add up to 24”. **NOTE:** unless specifically designated a “Heritage Tree” by action of the Planning Commission, Eucalyptus, Acacia, Monterrey Pine, Palm, and Privet are not considered protected trees.

Or a tree with at least a 6” DBH that is located within the structural setback of creeks or streams (Creek and Riparian Habitat Protection 122-802).

Or any tree or group of trees which has a relationship to an event of historical significance or is of public interest and which has been designated by action of the Planning Commission as a heritage tree.

2. Locate driplines and tree #’s on the site map
3. Identify tree health and structural condition.
4. Based on age, condition, and proposed site improvements, make recommendations for tree preservation.

Assumptions & Limitations
This report is based on information gathered from my site visits in April and October of 2014, and the “Preliminary Grading & Drainage Plans” by P/A Design Resources, Inc. dated October 8, 2014. It was assumed the trees and proposed improvements were accurately surveyed.

The health and structure of the trees were assessed visually from ground level. No drilling, root excavation, or aerial inspections were performed. Internal or non-detectable defects may exist, and could lead to part or whole tree failures. Due to the dynamic nature of trees and their environment, it is not possible for arborists to guarantee that trees will not fail in the future.

John C Traverso, BCMA
Tree Inventory and Assessment Table

#’s: Trees were tagged with square aluminum tags with a # sequence of 1-42. The path of numbering order wraps around the property in a clockwise direction starting at the right front along Risdon Rd. NOTE- 2 oaks were tagged near the southeast corner of the property on the east site of the canal.

DBH = Trunk diameters were based on circumference measured at 4.5’ above grade.

Condition Rating

“Dead”: Dead or declining beyond chance of recovery.

“Poor” Condition: Stunted or declining canopy, poor foliar color, possible disease or insect issues. Severe structural defects that may or may not be correctable. Usually not a reliable specimen for preservation.

“Fair” Condition: Fair to moderate vigor. Minor structural defects that can be correctable. More susceptible to construction impacts than a tree in good condition.

“Good” Condition: Good vigor, and color, with no obvious problems or defects. Generally more resilient to impacts.

“P”: Indicates tree is considered a protected tree per the city’s ordinance.

<table>
<thead>
<tr>
<th>Tag #’s</th>
<th>Species</th>
<th>DBH in “”</th>
<th>Heath</th>
<th>Structure</th>
<th>N</th>
<th>E</th>
<th>S</th>
<th>W</th>
<th>Comments</th>
<th>Const. Impact</th>
<th>“P”</th>
<th>Action Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Valley Oak</td>
<td>Quercus lobata</td>
<td>13</td>
<td>Fair</td>
<td>Poor</td>
<td>15</td>
<td>8</td>
<td>10</td>
<td>15 Located in front drainage ditch. Topped by PG&E. Drainage ditch to be backfilled and walkway installed.</td>
<td>High</td>
<td>P</td>
<td>Remove</td>
</tr>
<tr>
<td>2</td>
<td>Valley Oak</td>
<td>Quercus lobata</td>
<td>16.5, 19</td>
<td>Fair</td>
<td>Fair</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>25 Located in front drainage ditch. Topped by PG&E. Drainage ditch to be backfilled and walkway installed.</td>
<td>High</td>
<td>P</td>
<td>Remove</td>
</tr>
<tr>
<td>Tag #s</td>
<td>Species</td>
<td>DBH in "</td>
<td>Heath</td>
<td>Structure</td>
<td>N</td>
<td>E</td>
<td>S</td>
<td>W</td>
<td>Comments</td>
<td>Const. Impact</td>
<td>"P"</td>
<td>Action Plan</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------</td>
<td>----------</td>
<td>-------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---------------</td>
<td>-----</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 3 | Stone Pine
Pinus pinea | 21 | Good | Poor | 15|10 |10 |30 | Tree has a 30 deg. lean west towards tel. pole. Poor specimen. | Moderate to high. | | Remove |
| 4 | Black Locust
Robinia pseudoacacia | 9.5, 6.5 | Poor | Poor | 10|10 |0 |10 | 90% dead. Within proposed building footprint. | High | | Remove |
| 5 | Mulberry
Morus alba | 17 | Poor | Poor | 15|10 |20 |20 | Canopy in severe decline. Within proposed building footprint. | High | | Remove |
| 6 | Mulberry
Morus alba | 28 | Poor | Poor | 30|25 |25 |20 | Canopy in severe decline. Within proposed building footprint. | High | | Remove |
| 7 | Bailey Acacia | 19 | Fair | Poor | 20|25 |20 |15 | Poorly structured. Within proposed building footprint. | High | | Remove |
| 8 | Valley Oak
Quercus lobata | 5, 6 | Good | Poor | 10|8 |8 |6 | Included, co-dominant leaders at base. Within driveway entrance. | High | | Remove |
| 9 | Western Cottonwood
Populus fremontii | 10, 8, 6 | Poor | Poor | 5 |5 |5 |5 | 80% dead. Within driveway entrance. | High | | Remove |

John C Traverso, BCMA
<table>
<thead>
<tr>
<th>Tag #'s</th>
<th>Species</th>
<th>DBH in “</th>
<th>Heath</th>
<th>Structure</th>
<th>N</th>
<th>E</th>
<th>S</th>
<th>W</th>
<th>Comments</th>
<th>Const. Impact</th>
<th>“P”</th>
<th>Action Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Black Locust</td>
<td>Robina pseudoacacia</td>
<td>8, 6, 7, 7, 5, 5</td>
<td>Fair</td>
<td>Poor</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10% dieback in upper canopy, included co-dominant leaders. Very close to C3 treatment area, where no work is to occur.</td>
<td>Low</td>
<td>P</td>
</tr>
<tr>
<td>11</td>
<td>Valley Oak</td>
<td>Quercus lobata</td>
<td>6</td>
<td>Good</td>
<td>Good</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>Under PG&E wires, and within driveway entrance. Will be topped in future if overhead wires are to remain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Monterey Pine</td>
<td>Pinus radiata</td>
<td>22</td>
<td>Poor</td>
<td>Poor</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>Dead. Within proposed lane.</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Black Locust</td>
<td>Robina pseudoacacia</td>
<td>7, 7.5, 5.5</td>
<td>Poor</td>
<td>Poor</td>
<td>15</td>
<td>10</td>
<td>0</td>
<td>6</td>
<td>15% dieback, co-dominant leaders at base of tree. At top of canal, within riparian structural setback. May be left as a nature snag for wildlife.</td>
<td>Low</td>
<td>P</td>
</tr>
<tr>
<td>14</td>
<td>Black Locust</td>
<td>Robina pseudoacacia</td>
<td>7, 5, 4</td>
<td>Fair</td>
<td>Poor</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>Included co-dominant leaders at base. At top of canal.</td>
<td>Low</td>
<td>P</td>
</tr>
<tr>
<td>15</td>
<td>White Poplar</td>
<td>Populus alba</td>
<td>13</td>
<td>Good</td>
<td>Fair</td>
<td>25</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>5 degree lean east at top of canal within riparian structural setback.</td>
<td>Low</td>
<td>P</td>
</tr>
<tr>
<td>Tag #s</td>
<td>Species</td>
<td>DBH in "</td>
<td>Heath</td>
<td>Structure</td>
<td>N</td>
<td>E</td>
<td>S</td>
<td>W</td>
<td>Comments</td>
<td>Const. Impact</td>
<td>“P”</td>
<td>Action Plan</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>----------</td>
<td>-------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--------------</td>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>16</td>
<td>Black Locust Robina pseudoacacia</td>
<td>4, 4, 3, 3, 3</td>
<td>Poor</td>
<td>Poor</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>80% dead, with included leaders at base. At top of canal within riparian structural setback. May be left as a nature snag for wildlife.</td>
<td>Low</td>
<td>P</td>
<td>Save Nature snag</td>
</tr>
<tr>
<td>17</td>
<td>Black Locust Robina pseudoacacia</td>
<td>5.5, 3.5, 2</td>
<td>Poor</td>
<td>Poor</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>Dead, at top of canal within riparian structural setback. May be left as a nature snag for wildlife.</td>
<td>Low</td>
<td>P</td>
<td>Save Nature snag</td>
</tr>
<tr>
<td>18</td>
<td>Black Locust Robina pseudoacacia</td>
<td>4, 4, 3.5, 3.5, 2, 2</td>
<td>Poor</td>
<td>Poor</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>80% dead, at top of canal within riparian structural setback. May be left as a nature snag for wildlife.</td>
<td>Low</td>
<td>P</td>
<td>Save Nature snag</td>
</tr>
<tr>
<td>19</td>
<td>Valley Oak Quercus lobata</td>
<td>16</td>
<td>Good</td>
<td>Good</td>
<td>12</td>
<td>15</td>
<td>25</td>
<td>12</td>
<td>At top of canal within riparian structural setback.</td>
<td>Low</td>
<td>P</td>
<td>Save</td>
</tr>
<tr>
<td>20</td>
<td>Valley Oak Quercus lobata</td>
<td>6, 4.5, 4, 2</td>
<td>Good</td>
<td>Fair</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>Basal spouts. At top of canal within riparian structural setback.</td>
<td>Low</td>
<td>P</td>
<td>Save</td>
</tr>
<tr>
<td>21</td>
<td>Modesto Ash Fraxinus v. Modesto</td>
<td>39</td>
<td>Good</td>
<td>Good</td>
<td>33</td>
<td>30</td>
<td>35</td>
<td>30</td>
<td>Large tree in middle of property. Within proposed lane.</td>
<td>High</td>
<td>P</td>
<td>Remove</td>
</tr>
<tr>
<td>22</td>
<td>Valley Oak Quercus lobata</td>
<td>29</td>
<td>Good</td>
<td>Good</td>
<td>0</td>
<td>15</td>
<td>30</td>
<td>30</td>
<td>On east side of canal within riparian structural setback.</td>
<td>Low</td>
<td>P</td>
<td>Save</td>
</tr>
<tr>
<td>Tag #s</td>
<td>Species</td>
<td>DBH in “</td>
<td>Heath</td>
<td>Structure</td>
<td>N</td>
<td>E</td>
<td>S</td>
<td>W</td>
<td>Comments</td>
<td>Const. Impact</td>
<td>“P”</td>
<td>Action Plan</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
<td>----------</td>
<td>-------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--------------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>23</td>
<td>Valley Oak Quercus lobata</td>
<td>10.5, 13.5</td>
<td>Good</td>
<td>Fair</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>25</td>
<td>On east side of canal within riparian structural setback.</td>
<td>Low</td>
<td>P</td>
<td>Save</td>
</tr>
<tr>
<td>24</td>
<td>Valley Oak Quercus lobata</td>
<td>10, 11, 13</td>
<td>Good</td>
<td>Fair</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>Co-dominant leaders at base. Autumn Brook Lane ends at edge of dripline.</td>
<td>Moderate</td>
<td>P</td>
<td>Save</td>
</tr>
<tr>
<td>25</td>
<td>Valley Oak Quercus lobata</td>
<td>10.5, 4</td>
<td>Good</td>
<td>Good</td>
<td>22</td>
<td>22</td>
<td>25</td>
<td>25</td>
<td>In depression swale along southwest edge of property. Grade limits and</td>
<td>Moderate - high</td>
<td>P</td>
<td>Save</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>drainage will be within dripline 8’ & 10’ from base of tree.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Italian Buckthorn Rhamnus alaternus</td>
<td>4, 5</td>
<td>Good</td>
<td>Good</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>Large woody shrub. Proposed grade limits 7’ from base of shrub.</td>
<td>Moderate</td>
<td></td>
<td>Save</td>
</tr>
<tr>
<td>27</td>
<td>Valley Oak Quercus lobata</td>
<td>3, 4, 5.5</td>
<td>Good</td>
<td>Fair</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>Co-dominant leaders at the base. Proposed grade limits 5’ from base of</td>
<td>Moderate - high</td>
<td>P</td>
<td>Save</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tree.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Fruiting Plum Prunus sp.</td>
<td>7, 6, 6, 5, 4, 5</td>
<td>Good</td>
<td>Fair-poor</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>Old dense tree with impenetrable foliage to the ground. Within building</td>
<td>High</td>
<td>P</td>
<td>Remove</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>footprint.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Fig</td>
<td>6</td>
<td>Good</td>
<td>Fair</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>Dense low branching, Within building footprint.</td>
<td>High</td>
<td></td>
<td>Remove</td>
</tr>
<tr>
<td>Tag #s</td>
<td>Species</td>
<td>DBH in “</td>
<td>Heath</td>
<td>Structure</td>
<td>N</td>
<td>E</td>
<td>S</td>
<td>W</td>
<td>Comments</td>
<td>Const. Impact</td>
<td>“P”</td>
<td>Action Plan</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------</td>
<td>----------</td>
<td>-------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>----------------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>30</td>
<td>Valley Oak</td>
<td>12, 7, 5, 4</td>
<td>Good</td>
<td>Fair</td>
<td>10</td>
<td>20</td>
<td>15</td>
<td>8</td>
<td>Co-dominant leaders at base. Proposed grade limits 8’ from base of tree.</td>
<td>Moderate to high</td>
<td>P</td>
<td>Save</td>
</tr>
<tr>
<td>31</td>
<td>Valley Oak</td>
<td>14.5</td>
<td>Good</td>
<td>Good</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>Co-dominant leaders at 7’. Proposed grade limits 12’ from base of tree.</td>
<td>Moderate</td>
<td>P</td>
<td>Save</td>
</tr>
<tr>
<td>32</td>
<td>Mexican Fan Palm</td>
<td>18”</td>
<td>Good</td>
<td>Fair</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>Dead fronds still clinging to trunk from ground to canopy. 20’ away from west fenceline. Within proposed building footprint.</td>
<td>High</td>
<td></td>
<td>Remove</td>
</tr>
<tr>
<td>33</td>
<td>Valley Oak</td>
<td>10</td>
<td>Good</td>
<td>Good</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>20’ off west fence. At edge of building footprint.</td>
<td>High</td>
<td></td>
<td>Remove</td>
</tr>
<tr>
<td>34</td>
<td>Valley Oak</td>
<td>5, 4.5, 2</td>
<td>Good</td>
<td>Fair</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>Comprised of basal sprouts. 10’ off west fence. Proposed grade limits 6’ from base of tree.</td>
<td>Moderate to high</td>
<td></td>
<td>Save</td>
</tr>
<tr>
<td>35</td>
<td>Valley Oak</td>
<td>7</td>
<td>Good</td>
<td>Fair-poor</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>0</td>
<td>Sweeping bend in trunk. Growing from under west fence. Proposed grade limits 15’ from base of tree.</td>
<td>Low</td>
<td></td>
<td>Save</td>
</tr>
<tr>
<td>36</td>
<td>Valley Oak</td>
<td>24</td>
<td>Good</td>
<td>Fair</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>Co-dominant stems at 10’. 14’ from west fence. Proposed grade limits 7’ from base of tree.</td>
<td>Moderate to high</td>
<td>P</td>
<td>Save</td>
</tr>
<tr>
<td>Tag #s</td>
<td>Species</td>
<td>DBH in "</td>
<td>Heath</td>
<td>Structure</td>
<td>N</td>
<td>E</td>
<td>S</td>
<td>W</td>
<td>Comments</td>
<td>Const. Impact</td>
<td>“P”</td>
<td>Action Plan</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>--</td>
<td>---------------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>37</td>
<td>Valley Oak Quercus lobata</td>
<td>18</td>
<td>Good</td>
<td>Fair-poor</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>One-sided canopy with a 15 degree lean to the east. Within building footprint.</td>
<td>High</td>
<td>P</td>
<td>Remove</td>
</tr>
<tr>
<td>38</td>
<td>Valley Oak Quercus lobata</td>
<td>15</td>
<td>Good</td>
<td>Fair</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>One-sided sweeping lean to the southwest. Proposed grade limits 9' from base of tree.</td>
<td>Moderate to high.</td>
<td>P</td>
<td>Save</td>
</tr>
<tr>
<td>39</td>
<td>Valley Oak Quercus lobata</td>
<td>7</td>
<td>Good</td>
<td>Fair</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>On-sided sweeping lean to the northeast. Proposed grade limits 8' from base of tree.</td>
<td>Moderate to high.</td>
<td></td>
<td>Save</td>
</tr>
<tr>
<td>40</td>
<td>Western Cottonwood Populus fremontii</td>
<td>11, 10</td>
<td>Poor</td>
<td>Poor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>Declining canopy with a 20 degree lean over neighbors property to the west. Proposed grade limits to be 13' from base of tree.</td>
<td>Moderate</td>
<td></td>
<td>Save</td>
</tr>
<tr>
<td>41</td>
<td>Valley Oak Quercus lobata</td>
<td>13</td>
<td>Fair</td>
<td>Fair</td>
<td>25</td>
<td>25</td>
<td>12</td>
<td>0</td>
<td>Tip decline in upper canopy (10%). Within building footprint.</td>
<td>High</td>
<td>P</td>
<td>Remove</td>
</tr>
<tr>
<td>42</td>
<td>Valley Oak Quercus lobata</td>
<td>15</td>
<td>Good</td>
<td>Good</td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>Co-dominant leaders at 25'. Drainage proposed 5' from base of tree.</td>
<td>High</td>
<td>P</td>
<td>Save</td>
</tr>
</tbody>
</table>
Discussion
Trees #25, 26, 27, 30, 31, 34, 35, 36, 38, 39, 40, & 42 to be saved, are all very close to the proposed grade limits and drainage system, and most will have their driplines encroached. Although impacts could potentially be high for some of these trees, the fact that they are part of a grove that we can protect as a large canopy unit, will go a long way in limiting impact and allowing them to be more resilient.

Fencing off at the grade limits and mulching prior to any grading, will be critical to protect the remaining root zone. Grading and drainage installation within the driplines will need to be monitored by an arborist to limit the damage to the portion of the root zones that cannot be protected.

Trees #10, & 13 - 18 (black locust & 1 poplar) are in various stages of decline, however, they are well clear of the development at the top of canal bank, and are providing a good habitat for birds and wildlife. These trees have been indicated for preservation as “Nature Snags”.

Recommendations

Pre-demolition & grading
- Remove trees 1-9, 11, 12, 21, 28, 29, 32, 33, 37, & 41, and clear understory brush from trees to be saved. Use resulting chipper mulch as root protection under trees to be saved (#’s 10, 13-20, 22-27, 30, 31, 34, 35, 36, 38, 39, 40, & 42).
- Project arborist to establish pruning recommendations for trees to be saved, primarily for clearance issues, and to clean crowns of deadwood. Thinning of the canopies is not recommended as the trees will need food supply from the foliage to maintain resiliency.
- Establish a TPZ “Tree Protection Zone” around trees to be saved by erecting 6’ chain-link fencing around the trees or groves of trees as indicated on tree protection plan in arborist report. Fencing contractor shall meet with project arborist and contractor to confirm fencing locations.
- TPZ’s shall be mulched with chipper mulch to a depth of 4” as directed by the project arborist. Mulch shall be kept at least 12” back from base of trunks to avoid holding moisture against trunk tissue.
- Contractor shall have a pre-construction meeting with project arborist.

Grading, drainage, and construction phase
- Contractor shall notify project arborist to be on site during grading, trenching, or other work to occur within tree driplines and most importantly when working near trees 24-37, 30, 31, 34, 35, 36, 38, 39, 40, & 42.
- At no time shall the TPZ fencing be encroached, adjusted, or removed, without consulting with the project arborist.
- TPZ’s shall be kept clean and void of construction materials, and debris. At no time shall equipment, supplies, fuels or other toxic materials be stored within the tree protection zones.
- TPZ fencing shall be kept upright and sturdy until construction is completed and the removal of the fencing has been released by the project arborist.
Landscaping phase

- Avoid trenching or grade changes within driplines.
- Avoid planting or irrigating within 10' of any native oak.
- Plant only drought tolerant oak compatible species, that are well spaced within driplines of oaks and at least 10' back from trunks.
- Use individual plant dedicated irrigation such as drip within oak driplines. Avoid overhead irrigation.
- Note: Proposed “Preliminary Landscape Plan” dated 10/8/14 is appropriate.
- Recommend having landscape contractor, meet with project arborist to go over tree protection measures prior to installation.

Please feel free to contact me if there are any questions or concerns.

Respectfully,

John C Traverso
ISA Board Certified Master Arborist #0206-B
ISA Qualified Tree Risk Assessor #994
WCISA CTW #996
APPENDIX C

STORMWATER CONTROL PLAN
A report prepared for:

Mr. Zheng Tan
1233 Pine Creek Way, Unit A
Concord, California 94520-3642
Ph (530)-219-3486

Stormwater Control Plan
Autumn Brook
Subdivision 9392
Single Family Residential Development
City of Concord, California

P/A Design Resources, Inc. Job No. 13019-10-0340

Ross Avedian, PE
Principal/ Civil Engineer

David L. Perrings, PE
Civil Engineer

P/A Design Resources, Inc.
3021 Citrus Circle
Suite 150
Walnut Creek, California 94598
(925)-210-9300

October, 2014
TABLE OF CONTENTS

I. Project Settings

A. Project Name, Location, Description ... 1
B. Existing Site Features and Conditions ... 5
C. Opportunities and Constraints for Stormwater Control 8
 1. **Opportunities** .. 8
 2. **Constraints** ... 9
 3. **Maximum Extent Practicable** ... 9

II. Measures to Limit Imperviousness

A. Measures Used to Limit Directly Connected Impervious Area 9
 1. **Site Design Features** .. 9
 2. **Pervious Pavements** .. 9
 3. **Drainage Design** ... 9

III. Selection and Preliminary Design of Treatment BMP/IMPs

A. Selection of Appropriate BMP/IMPs ... 9
 1. **Consideration of Infiltration BMP/IMPs** ... 10
 2. **Treatment BMP/IMPs** ... 10
 3. **Treatment Chain** .. 11
 4. **Description of Drainage Areas and BMP/IMPs** 11

B. Locations and Elevations .. 15
C. Sizing Calculations and Table Summarizing Impervious Areas and BMP/IMPs 15
D. BMP/IMP Measures on Project Site Plan and General Information 17

IV. Source Control Measures

A. Description of Site Activities and Potential Sources of Pollutants 17
B. List of Operational Source Control BMP/IMPs .. 18
C. Table of Permanent and Operational Source Control Measures 18

V. Summary of Permitting and Code Compliance Issues

VI. BMP/IMP Operation and Maintenance Requirements

A. Ownership and Responsibility for Maintenance in Perpetuity 19
 1. ** Commitment to Execute any Necessary Agreements** 19
2. Statement Accepting Responsibility for Operation and Maintenance of BMP/IMP’s Until that Responsibility is Formally Transferred .. 19

B. Summary of Maintenance Requirements for BMP/IMP. .. 19

VII. Construction Plan C.3 Checklist ... 20

VIII. Certification ... 20

References ... 21
LIST OF FIGURES

Figure 1: Vicinity Map ... 2
Figure 2: Site Plan ... 4
Figure 3: Existing Site Conditions and Topography ... 6
Figure 4: IMP - Bioretention Detail .. 10
Figure 5: Preliminary Storm Water Control Plan ... 13
Figure 6: IMP - Preliminary Grading and Drainage Plan .. 14

LIST OF TABLES

Table 1: Description of BMP/IMP Treatment by Drainage Area 12
Table 2: Treatment BMP/IMP Sizing Worksheets .. 16
Table 3: Permanent and Operational Source Control Measures 18
Table 4: Construction Plan C.3. Checklist ... 20
Stormwater Control Plan
Autumn Brook Single-Family Residential Development
Concord, California

I. Project Settings

A. Project Name, Location, Description

This report has been prepared to comply with the requirements of Contra Costa Clean Water Program’s Stormwater C.3.Program (Reference 1) and to meet the requirements of the City of Concord’s Design Review Application Checklist, dated April 8th, 2013 (Reference 2).

The Autumn Brook site is located at 1890 Risdon Road (APN-147-350-003), Concord California as shown on Figure 1, Vicinity Map. The existing site area is approximately 2.02 acres as determined from County Assessor’s records. Currently existing on the site is one currently unoccupied residential structure with a fence, gazebo, shed and existing well located in the North West portion of the site. A significant portion of the site is occupied by an existing Contra Costa County Flood Control Canal. The canal is an important drainage and flood control facility serving the surrounding area. This facility is to remain and currently occupy’s 29,269 SF (0.67 acres) of the project site. The overall site is relatively flat with a cross slope of less than two percent.

A residential development of eight single family homes with a private lane with access off of Risdon Road is proposed to share the site with the existing flood control canal.
Figure 1: Vicinity Map
The primary facilities located on the project site (See Figure 2) will consist of the following (Reference 3):

- 8 detached single family homes.
- Paved street area for vehicular access to the houses.
- Standard fire department turnaround area
- Driveways.
- Parking stalls: 8 full size 8ft by 22 ft guest parking spaces on project’s private lane and 4 public parking spaces along Risdon Road frontage.
- Landscape areas.
- One Bio swale for water quality.
- Closed conduit storm drainage system that ties into existing 33 inch storm drain in Risdon Road
- Existing flood control channel to be owned by the Home Owners Association (HOA) and maintained by the Contra Costa County Flood Control District subject to their existing easement.

Figure 2: Site Plan
(See foldout on next page)
This project will conform to the storm water quality requirements of the City of Concord Design Review Application Checklist and the Contra Costa County Clean Water Program’s Stormwater C.3. Guidebook.

The City of Concord Design Review Application Checklist requirement for Stormwater Quality states:

“If the project creates or replaces more than 10,000 sq. ft of impervious area, a Stormwater Control Plan is required.”

The total amount of impervious area (buildings and all other hardscape surfaces) being created and replaced is 36,373 sf therefore a Stormwater Control Plan is required.

According to the Contra Costa County Clean Water Program’s Stormwater C.3. Guidebook this project falls within the threshold of Group 2 (greater than 10,000 Square Feet to less than 1 Acre) for replacement or creation of new impervious surfaces as shown on Table 1-1 in the Stormwater C.3 Guidebook (Reference 1). Therefore, the requirement for Treatment and Source Control Measures for stormwater runoff apply; but, the requirements for Hydromodification (HMP), or flow control is not applicable to this project since it is less than 1 acre.

B. Existing Site Features and Conditions

The existing residential structure is currently vacant and in an advanced stage of disrepair. The site is rectangular in shape. Existing residential developments abut both the southeast and southwest sides of the project site. The existing impervious surface area on the site is **2,731 sf**.

Figure 3: Exisiting Site Conditions and Topography

(See Foldout on next Page)
Existing Site Drainage

The current site drainage is presented on Figure 3. Excluding the existing flood control channel there is no offsite areas draining onto the project site. The site drains by overland flow either to the existing flood control canal or to the existing drainage ditch along the southeast side of Risdon Road.

The project site is not subject to inundation and can be found on the FEMA Flood Insurance Rate Map (FIRM), Community – Panel Number 06013C0283F and located in an area designated as ‘Zone AE within the canal and Zone X (500 yr floodplain) outside of the channel.’

Existing Vegetative Cover and Impervious Areas

The portion of the project site outside of the limits of the CCCFC Channel is primarily vacant and fallow with the exception of the one existing residential structure and it’s couple of surrounding out buildings and existing trees. An Arborist Tree Report prepared by Tarverso Tree Service identified 42 trees in various states of health ranging from good, fair and poor. To be saved if possible are 25 trees and to be removed are 17 trees.

The existing impervious area on the site which consists of an existing residential structure gazebo and shed covers an area of 2,731 sf and is shown on Figure 3 Existing Site Conditions and Topography.

Existing Climate Characteristics

The climate in the vicinity of the site reflects the Mediterranean climates of the central interior regions of California and is characterized by cool, wet winters and hot, dry summers. Long term data shown on the Contra Costa County Public Works Department Mean Seasonal Isohyets Map B-166 dated December 1977 (Reference 5) indicates that rainfall at the site averages approximately 17.5 inches per year.

Existing Geology, Soils and Groundwater

A Geotechnical Investigation was prepared for the Autumn Brook site by Engeo, Incorporated, dated February 18th, 2014 (see Reference 6). Groundwater was encountered in several borings on the site at depths of 8.5 ft and 13 ft. The groundwater levels correspond to the levels observed within the channel. Engeo recommends that the proposed bio swale be lined.

Near surface soils that were tested indicate the site soils have a high expansion potential (Plasticity Index (PI) of 30.). The hydrologic soil classification for the soil is Type D.

The design of the water quality treatment bio-swale along the northeastern side of the development area will need to account for the anticipated high clay content and density of the underlying soils, the near-surface site soils are not expected to have adequate permeability values to handle stormwater infiltration. Therefore, best management practices should assume that little stormwater infiltration will occur at the site.

Although infiltration rates are expected to be low, clayey soils can be weakened by water infiltration and saturation, which can cause problems for adjacent improvements. The
bio-swale should be designed with impermeable liners, subdrains, and their excavations should be situated outside a 1:1 line of projection extending downwards from nearby improvements (such as curb, street, site wall, or house) unless retaining side walls are planned. Bioretention soil treatment mixes should be compacted to at least 85 percent relative compaction.

Biological Resources Analysis

A Biological Resources Analysis Report was prepared for the project site by Marylee Guinon LLC, OLBERDING Environmental, Inc. in April of 2014 (Reference 7). The purpose of the report was to identify sensitive plant and wildlife species, sensitive habitats, and biological constraints potentially occurring on the Property and to provide an assessment of the potential need for jurisdictional governmental permits.

The Reports recommendations are as follows:

Wetlands/Waters—The project as proposed is devoid of any impact (fill or storm drain outfall) to the channel, therefore authorization under Section 404 and 401 of the Clean Water Act (CWA) and authorization under Section 1600 of the Fish and Game Code is not required.

Pre-Construction Bird Survey—If project construction activities are to occur during the months of February thru August preconstruction surveys for nesting passerine birds within the project site and the surrounding area of influence should be conducted.

Pre-Construction Bat Survey—To avoid “take” of special-status bats, mitigation measures shall be implemented prior to the removal of any existing trees or demolition of structures on the project site.

Erosion Control—Appropriate mitigation measures shall be implemented to avoid or minimize the impacts to aquatic organisms. These measures may include best management practices (BMP’s) such as hay bales, silt fencing, placement of straw mulch and hydro seeding of exposed soils after construction as identified in the Storm Water Pollution Prevention Plan (SWPPP).

C. Opportunities and Constraints for Stormwater Control

1. **Opportunities**

The site is relatively flat. The site is divided into a total of five Drainage Management Areas, DMA’s for water quality treatment purposes. The DMA’s will drain to the Integrated Management Practice, **IMP** for treatment. The IMP for the site is a bio-swale covering an area of **1,956 sf**. The bio-swale outlets into the on-site storm drain located at the northwest side of the bio-swale continuing to and connecting into the existing 33 inch storm drain line in Risdon Road. The bio-swale is designed to treat the low flows from the project site in accordance with C.3 requirements. The swale is designed to pass thru higher storm flows that do not require treatment into the storm drain line.
2. **Constraints**
The small size of the project area results in limited space to consider the use of multiple IMP measures to treat the storm water runoff.

Constraints include low-permeability soils (NRCS Hydrologic Soil Group D). Disposal of runoff to deep infiltration is not feasible due to the low permeability of the clay soils.

There is no run-on from adjacent sites so only onsite flows, excluding the flood control channel area needs to be treated.

3. **Maximum Extent Practicable**
Stormwater controls are being proposed on the site to the maximum extent practicable. The total hardscape area being treated is 36,373 sf (0.835 acres) which is 63% of the total developed project area. The bio-swale is located out in the open and is accessible for inspection and maintenance purposes.

II. **Measures to Limit Imperviousness**
The opportunity to limit imperviousness is constrained by the size of the project as previously mentioned. The proposed zoning designation for the project site is RL, low density residential which is in conformance with the City of Concord's current General Plan.

A. **Measures Used to Limit Directly Connected Impervious Area**

1. **Site Design Features**
The bio-swale will have the effect of causing a break in the flow from the impervious areas for the low flows which are to be treated. The higher storm flows will bypass the bio retention pond and flow directly into the storm drain system.

2. **Pervious Pavements**
Pervious pavement is not being purposed for this project site. Conventional pavement will be used.

3. **Drainage Design**
A closed conduit pipe system designed to drain the 10 yr design storm will drain the project site. The bio-swale will also drain into this system. The project will also provide for overland release for drainage of the 100 year storm.

III. **Selection and Preliminary Design of Treatment BMP/IMPs**

A. **Selection of Appropriate BMP/IMPs**
Runoff from roofs, parking stalls, driveways, pavement areas as well as lawn areas from each DMA will be collected and drained thru the bioretention areas.
The BMP/IMP bio-swale will be accessible for inspection and maintenance purposes. There is ample elevation relief across the site to provide sufficient hydraulic head to pass the water quality treatment and storm flows via gravity flow.

The requirements mentioned in the C.3 Manual to provide BMP/IMPs to mitigate peak flows and storm duration (hydro modification) is not considered in the design of this project since the project falls in the Group 2 category, less than one acre, which does not require Hydrograph Modification Management.

1. **Consideration of Infiltration BMP/IMPs**
 The existing site soil classification is D, rendering the use of direct infiltration BMP/IMP’s impracticable.

2. **Treatment BMP/IMPs**
 The primary treatment facility proposed is the bio-swale for treatment of all the on-site area. This facility will incorporate sub-drains and overflow outlet piping to insure positive drainage from the site. The ultimate outlet for both storm drainage and water quality treatment is into the existing 33 inch diameter storm drainage line that is located just to the north west of the site in Risdon Road (see **Figure 4: IMP- Bioretention Detail and Reference 1**).

Figure 4: IMP - Bioretention Detail
3. Treatment Chain
The water quality treatment chain for the project site is designed to treat runoff from the impervious areas and the pervious areas. The treatment BMP/IMP is sized in accordance with criteria in the Contra Costa Clean Water Program Stormwater C.3 Guidebook.

4. Description of Drainage Areas and BMP/IMPs
The following Table provides a description of each of the treatment areas on the project site. This description augments what is shown on Figures 5: The Preliminary Storm Water Control Plan and Figure 6: The Preliminary Grading and Drainage Plan which follows on the next two pages. The area is designed to treat at low flows the stormwater runoff with a BMP/IMP. The areas are also designed to allow the storm water flood flows to pass thru the system without treatment of these larger flows. The Drainage Area ID’s (example: DMA1) are also referred to as Drainage Maintenance Areas (DMA) see Table 1 on the following page.
Table 1: Description of BMP/IMP Treatment by Drainage Area

<table>
<thead>
<tr>
<th>Drainage Area ID</th>
<th>Description of Surface to be Treated</th>
<th>BMP/IMP ID</th>
<th>Description of BMP/IMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMA1</td>
<td>Roof Area = 15,728 sf</td>
<td>IMP1</td>
<td>Bio-swale Area = 1,956 sf</td>
</tr>
<tr>
<td>DMA2</td>
<td>Driveways, walkways and Patios = 7,280 sf</td>
<td>IMP1</td>
<td>“ditto”</td>
</tr>
<tr>
<td>DMA3</td>
<td>Private Lane and sidewalk = 13,365 sf</td>
<td>IMP1</td>
<td>“ditto”</td>
</tr>
<tr>
<td>DMA4</td>
<td>Landscape Area = 19,224 sf</td>
<td>IMP1</td>
<td>“ditto”</td>
</tr>
<tr>
<td>DMA5</td>
<td>Bio-swale Area = 1,956 sf</td>
<td>IMP1</td>
<td>“ditto”</td>
</tr>
</tbody>
</table>

The existing flood channel is considered a “self treating area”.

Figure 5 and Figure 6.

(See Foldout on next Two Pages)
B. **Locations and Elevations**

The projects BMP/IMP treatment device will be gravity based and pumping will not be required. The BMP/IMP has been incorporated into the overall landscaping design for aesthetics, ease of maintenance and accessibility purposes.

C. **Sizing Calculations and Table Summarizing Impervious Areas and BMP/IMPs**

The sizing requirements for water quality treatment were determined using the Contra Costa Clean Water Program’s IMP Sizing Calculator. IMP sizing results are presented in **Table 2** listed below. For each Drainage Management Area (DMA), the planned size of the IMP meets or exceeds the minimum size required for treatment.
Table 2: Treatment BMP/IMP Sizing Worksheets

| Project Name | 1880 Risdon Road Project | BMP Type: Treatment Only | APM: Drainage Area: 67,563 sq ft | Mean Annual Precipitation: 17.5 in.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP Name</td>
<td>BMP 1</td>
<td>BMP 2</td>
<td>BMP 3</td>
<td>BMP 4</td>
</tr>
<tr>
<td>BMP Type</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
</tr>
<tr>
<td>Soil Group</td>
<td>IMP 1</td>
<td>IMP 2</td>
<td>IMP 3</td>
<td>IMP 4</td>
</tr>
<tr>
<td>BMP Name</td>
<td>BMP 1</td>
<td>BMP 2</td>
<td>BMP 3</td>
<td>BMP 4</td>
</tr>
<tr>
<td>BMP Type</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
</tr>
<tr>
<td>Soil Group</td>
<td>IMP 1</td>
<td>IMP 2</td>
<td>IMP 3</td>
<td>IMP 4</td>
</tr>
</tbody>
</table>

IV. Areas Draining to IMPs

<table>
<thead>
<tr>
<th>BMP Name</th>
<th>BMP 1</th>
<th>BMP 2</th>
<th>BMP 3</th>
<th>BMP 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP Type</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
</tr>
<tr>
<td>Soil Group</td>
<td>IMP 1</td>
<td>IMP 2</td>
<td>IMP 3</td>
<td>IMP 4</td>
</tr>
<tr>
<td>BMP Name</td>
<td>BMP 1</td>
<td>BMP 2</td>
<td>BMP 3</td>
<td>BMP 4</td>
</tr>
<tr>
<td>BMP Type</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
</tr>
<tr>
<td>Soil Group</td>
<td>IMP 1</td>
<td>IMP 2</td>
<td>IMP 3</td>
<td>IMP 4</td>
</tr>
</tbody>
</table>

Post-Project Stormwater Treatment BMPs

<table>
<thead>
<tr>
<th>BMP Name</th>
<th>BMP 1</th>
<th>BMP 2</th>
<th>BMP 3</th>
<th>BMP 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP Type</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
</tr>
<tr>
<td>Soil Group</td>
<td>IMP 1</td>
<td>IMP 2</td>
<td>IMP 3</td>
<td>IMP 4</td>
</tr>
<tr>
<td>BMP Name</td>
<td>BMP 1</td>
<td>BMP 2</td>
<td>BMP 3</td>
<td>BMP 4</td>
</tr>
<tr>
<td>BMP Type</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
</tr>
<tr>
<td>Soil Group</td>
<td>IMP 1</td>
<td>IMP 2</td>
<td>IMP 3</td>
<td>IMP 4</td>
</tr>
</tbody>
</table>

Area

<table>
<thead>
<tr>
<th>BMP Name</th>
<th>BMP 1</th>
<th>BMP 2</th>
<th>BMP 3</th>
<th>BMP 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP Type</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
</tr>
<tr>
<td>Soil Group</td>
<td>IMP 1</td>
<td>IMP 2</td>
<td>IMP 3</td>
<td>IMP 4</td>
</tr>
<tr>
<td>BMP Name</td>
<td>BMP 1</td>
<td>BMP 2</td>
<td>BMP 3</td>
<td>BMP 4</td>
</tr>
<tr>
<td>BMP Type</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
</tr>
<tr>
<td>Soil Group</td>
<td>IMP 1</td>
<td>IMP 2</td>
<td>IMP 3</td>
<td>IMP 4</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>BMP Name</th>
<th>BMP 1</th>
<th>BMP 2</th>
<th>BMP 3</th>
<th>BMP 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP Type</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
</tr>
<tr>
<td>Soil Group</td>
<td>IMP 1</td>
<td>IMP 2</td>
<td>IMP 3</td>
<td>IMP 4</td>
</tr>
<tr>
<td>BMP Name</td>
<td>BMP 1</td>
<td>BMP 2</td>
<td>BMP 3</td>
<td>BMP 4</td>
</tr>
<tr>
<td>BMP Type</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
<td>Bioretention Facility</td>
</tr>
<tr>
<td>Soil Group</td>
<td>IMP 1</td>
<td>IMP 2</td>
<td>IMP 3</td>
<td>IMP 4</td>
</tr>
</tbody>
</table>

Report generated on 19062014 12:00 AM by the Contra Costa Clean Water Program BMP Sizing Tool software (version 1.3.0).
D. BMP/IMP Measures on Project Site Plan and General Information

The existing site is shown on Figure 3 while the proposed developed site plan with BMP/IMP’s and drainage features is shown on Figures 5 and 6.

With the exception of any corrective grading as required by the geotechnical engineer the site is expected to balance. The compaction of on-site soils during construction will be performed per the specification and requirements of the Geotechnical Engineer.

The project civil, landscape and architecture plans will be designed to provide adequate reveal (drop) between hardscape areas and vegetated areas to allow for positive flow without ponding along the edge of hardscape areas. The runoff from paved areas will sheet flow onto vegetated areas. The occurrence of concentrated flow from paved areas on to vegetated areas will be minimized to the maximum extent practicable.

On site soils will be compacted as specified on the improvement plans in such a manner as to maximize infiltration to the maximum extent practical. Measure will be taken to prevent over compaction due to on-site construction practices.

The drainage improvements include a conventional storm drain system with the bio-retention ponds. The storm drainage improvements for the project will drain the 10 year storm drainage flows through the project site as well as provide overland release for up to the 100 year storm. These drainage facilities are laid out so as not to interfere with the operation of the BMP/IMP’s. Preliminary sizing calculations using the modified rational method and flood routing techniques have been performed for this storm drainage and bio-retention system to insure that adequate space is reserved on the site for these facilities.

Other specific information such as on-site plant selection, access and periodic maintenance requirements will be provided as part of the project design drawings.

IV. Source Control Measures

A. Description of Site Activities and Potential Sources of Pollutants

The proposed site use is single-family housing. Source Controls shall be used as part of the SWCP for the prevention of, or limitation of, pollutants being released into surface water as a result of storm water runoff. This is the preferred method of pollution control since it is aimed at keeping pollutant out of the storm water (References 8 and 9).

This project has the following potential sources of stormwater pollutants:

- Pesticides used for indoor or structural pest control;
- Fertilizers, pesticides and herbicides used for residential landscape maintenance;
- Nutrient loading from household pets;
- Vehicle washing;
- Other vehicle related pollutants such as heavy metals, oil and grease.
B. List of Operational Source Control BMP/IMPs

The source controls are discussed in the following table.

C. Table of Permanent and Operational Source Control Measures

The following table demonstrates that both types of source control measures have been considered to the maximum extent practicable.

Table 3: Permanent and Operational Source Control Measures

<table>
<thead>
<tr>
<th>Potential Source</th>
<th>Permanent BMPs</th>
<th>Operational BMPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor and structural pest control</td>
<td>Provide Integrated Pest Management (IPM) information to homeowners, lessees and operators</td>
<td></td>
</tr>
<tr>
<td>Landscape and outdoor pesticides, herbicides, rodenticides, fungicides and fertilizers</td>
<td>Final Landscape Plans will: 1)Minimize irrigation and runoff and promote infiltration where appropriate 2)Minimize use of fertilizers and pesticides 3)Use pest-resistant plants, especially adjacent to hardscape when possible 4)Use plantings appropriate for the site soils, slopes, climate, sun, wind, land use, ecological consistency and plant interactions</td>
<td>Landscape will be maintained using minimum or no pesticides Landscape will be maintained using minimum fertilizer application especially adjacent to hardscape IPM information will be provided to homeowners</td>
</tr>
<tr>
<td>Vehicle washing</td>
<td>Stormwater pollution prevention information will be distributed to homeowners</td>
<td></td>
</tr>
<tr>
<td>On-Site drain Inlets</td>
<td>Stencil the storm drain inlets at the bio retention pond with “No Dumping, Drains to Creek” using thermoplastic tape</td>
<td></td>
</tr>
<tr>
<td>Interior floor drains</td>
<td>Interior floor drains will be plumbed to sanitary sewer</td>
<td></td>
</tr>
<tr>
<td>Potential Source</td>
<td>Permanent BMPs</td>
<td>Operational BMPs</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>Need for future indoor and structural pest control</td>
<td>Obtain a letter from the Project Architect regarding the type of pest control that will be required for the type of building construction on the site.</td>
<td></td>
</tr>
</tbody>
</table>

V. Summary of Permitting and Code Compliance Issues

The stormwater BMP/IMP’s are consistent with Contra Costa County codes and development requirements.

VI. BMP/IMP Operation and Maintenance Requirements

A. Ownership and Responsibility for Maintenance in Perpetuity.

1. Commitment to Execute any Necessary Agreements.

The project owner agrees to provide City of Concord the necessary easements or rights of entry for the purpose of access and inspection of the stormwater BMP/IMP’s.

2. Statement Accepting Responsibility for Operation and Maintenance of BMP/IMPs Until that Responsibility is Formally Transferred.

The project owner and applicant, accepts responsibility for maintenance and operation of the stormwater BMP/IMP’s associated with this Stormwater Control Plan until the responsibility is transferred to the site owners. The owner and applicant also agrees to annex into an appropriate Assessment District that may be established to help fund the ongoing inspection and/or maintenance costs if the City of Concord were to take over these responsibilities in the future.

B. Summary of Maintenance Requirements for BMP/IMP.

The detailed maintenance requirements for the BMP/IMP’s will be presented in an Operations and Maintenance Plan and Schedule which will be submitted to City of Concord with the project’s application for building permits.

The general maintenance requirements for the proposed project IMP’s are listed below. More specific requirements will be presented in the O&M Plan when it is submitted in the future.

Bioretention

These BMP/IMPs remove pollutants primarily by filtering runoff slowly through an active layer of soil. Routine maintenance is needed to ensure that flow is unobstructed, that erosion is prevented, and that plant roots hold soils together and are biologically active. Typical maintenance consists of the following:
• Inspect inlets for channels, exposure of soils, or other evidence of erosion. Clear any obstructions and remove any accumulation of sediment. Examine rock or other material used as a splash pad and replenish if necessary.

• Inspect outlets for erosion or plugging.

• Inspect side slopes for evidence of instability or erosion and correct as necessary.

• Observe soil at the bottom of the swale or filter for uniform percolation throughout. If portions of the swale or filter do not drain within 48 hours after the end of a storm, the soil should be tilled and replanted. Remove any debris or accumulations of sediment.

• Examine the vegetation to ensure that it is healthy and dense enough to provide filtering and to protect soils from erosion. Replenish mulch as necessary, remove fallen leaves and debris, prune large shrubs or trees, and mow turf areas. When mowing, remove no more than 1/3 height of grasses. Confirm that irrigation is adequate and not excessive. Replace dead plants and remove noxious and invasive vegetation.

• Abate any potential vectors by filling holes in the ground in and around the swales and bioretention and by insuring that there are no areas where water stands longer than 48 hours following a storm. If mosquito larvae are present and persistent, contact the Contra Costa Mosquito and Vector Control District for information and advice. Mosquito larvicides should be applied only when absolutely necessary and then only by a licensed individual or contractor.

VII. Construction Plan C.3 Checklist

A construction plan checklist listed below will be added at the time of improvement plans for the project. The last column which is intentionally left blank will be filled in when the table is added to the improvement plans. The checklist will also include the following note: The final grading plan shall conform to the delineation of the drainage areas in the Final SWCP.

Table 4: Construction Plan C.3. Checklist

<table>
<thead>
<tr>
<th>Stormwater Control Plan Figure # Or Page #</th>
<th>BMP/IMP ID &Description</th>
<th>See Plan Sheet #s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2</td>
<td>IMP1- Bioretention Area</td>
<td></td>
</tr>
</tbody>
</table>

VIII. Certification

The selections, size and preliminary design of treatment BMP’s and other control measures in this plan meet the requirements of Regional Water Quality Control Board Order R2-2003-0022 and subsequent amendments.
References

2. Design Review Application Checklist, City of Concord, California, form dated April 8th, 2013.

3. Autumn Brook, Subdivision 9392, A Quality Single-Family Detached Residential Project, City of Concord, California; Re-zoning, Planned Development Use Permit, Minor Use Permit, Major Subdivision/Tentative Map, Tree Removal and Minor Exception, P/A Design Resources, Inc., October 8th, 2014.

4. Tree Inventory and Preliminary Assessment for 1890 Risdon Road. Traverso Tree Service, Walnut Creek, California, April 14, 2014.

5. Contra Costa County Public Works Department, Mean Seasonal Isohyets, Drawing Number B-166, dated December 1977.

6. Preliminary Geotechnical Exploration, 1890 Risdon Road, Concord, California; Prepared by Engeo Incorporated, Project Number 10873.000.000, Submitted to Mr. Zheng Tan, 6226 Garden Court, Pleasanton, California 94566, February 18, 2014.

PRELIMINARY GEOTECHNICAL EXPLORATION
1890 RISDON ROAD
CONCORD, CALIFORNIA

Submitted to:
Mr. Zheng Tan
6226 Gardner Court
Pleasanton, CA 94566

Prepared by:
ENGEIO Incorporated

February 18, 2014

Project No:
10873.000.000
February 18, 2014

Mr. Zheng Tan
6226 Gardner Court
Pleasanton, CA 94566

Subject: 1890 Risdon Road
Concord, California

PRELIMINARY GEOTECHNICAL EXPLORATION

Dear Mr. Tan:

With your authorization, we have completed this preliminary geotechnical report for your property located at 1890 Risdon Road in Concord, California. The accompanying report presents our field exploration and limited laboratory testing together with our conclusions and preliminary recommendations regarding residential development at the site.

Our findings indicate that the project site is suitable for the proposed development provided the preliminary recommendations contained in this report are implemented during project planning. Additional design-level exploration services will be required in order to present grading, drainage, and foundation design recommendations. We are pleased to have been of service to you on this project and are prepared to consult further with you and your design team as the project progresses.

Sincerely

ENGEO Incorporated

Raymond P. Skinner, CEG
macy tong, GE

rps/mt/jf:pgex
TABLE OF CONTENTS

Letter of Transmittal

INTRODUCTION ... 1

1.1 PURPOSE AND SCOPE .. 1
1.2 SITE LOCATION AND DESCRIPTION ... 1
1.3 PROPOSED DEVELOPMENT ... 1

2.0 REGIONAL GEOLOGY ... 2

2.1 GEOLOGIC SETTING ... 2
2.2 FAULTING .. 2
2.3 SEISMICITY .. 2

3.0 AERIAL PHOTOGRAPH INTERPRETATION ... 2

4.0 FIELD EXPLORATION ... 3

4.1 LABORATORY TESTING .. 3
4.2 SUBSURFACE CONDITIONS ... 3
4.3 GROUNDWATER ... 4

5.0 CONCLUSIONS ... 4

5.1 SEISMIC HAZARDS .. 4
5.1.1 Ground Rupture .. 4
5.1.2 Ground Shaking ... 4
5.1.3 Ground Lurching .. 5
5.1.4 Liquefaction ... 5
5.1.5 Lateral Spreading .. 5
5.2 EXPANSIVE SOILS ... 5
5.3 CANAL BANK STABILITY .. 6
5.4 EXISTING FILLS ... 6
5.5 EXISTING WELL .. 6
5.6 CORROSION POTENTIAL ... 7

6.0 PRELIMINARY RECOMMENDATIONS ... 7

6.1 DEMOLITION AND STRIPPING ... 7
6.2 EXISTING FILL ... 7
6.3 SELECTION OF MATERIALS .. 7
6.4 GRADED SLOPES .. 8
6.5 BUILDING PAD TREATMENT .. 8
6.6 FILL PLACEMENT .. 8
6.7 RESIDENTIAL FOUNDATION DESIGN .. 8
6.8 STORMWATER TREATMENT .. 9

7.0 LIMITATIONS AND UNIFORMITY OF CONDITIONS ... 9
TABLE OF CONTENTS (Continued)

SELECTED REFERENCES
FIGURES
APPENDIX A – Boring Logs
APPENDIX B – Laboratory Test Data
INTRODUCTION

1.1 PURPOSE AND SCOPE

The purpose of this preliminary geotechnical exploration has been to identify geologic hazards within the project site and provide planning level recommendations for the proposed residential development. This study included the following scope of services:

- Review of published geologic maps and literature pertinent to the site.
- Performing a geologic reconnaissance by an ENGEO geologist.
- Examination of aerial photographs.
- Drilling two exploratory borings to characterize the site soils.
- Limited laboratory testing.
- Preparation of this preliminary geotechnical report summarizing our findings, conclusions and preliminary recommendations to assist in site planning.

We prepared this report exclusively for Mr. Zheng Tan and his design team consultants. ENGEO should review any changes made in the character, design or layout of the development to modify the conclusions and recommendations contained in this report, as necessary. This document may not be reproduced in whole or in part by any means whatsoever, nor may it be quoted or excerpted without the express written consent of ENGEO.

1.2 SITE LOCATION AND DESCRIPTION

The project site comprises approximately 2.02 acres of land located on the southeast side of Risdon Road as shown on the attached Vicinity Map, Figure 1. The northern portion of the site is currently occupied by a residential structure and various outbuildings with mature trees. An existing well was observed on the south side of the existing house at the location shown on the Site Plan, Figure 2. It is not known if there is an existing onsite septic system at the site.

The site is relatively flat although the southern portion of the site appears to be elevated by 2 to 3 feet with fill. A Contra Costa County Water District canal is located along the northeast side of the property and existing residential development is located along the southeast and southwest sides of the property.

1.3 PROPOSED DEVELOPMENT

We understand that the proposed development is in the early planning stage at this time. Based on discussions with the project team, we understand that the project may consist of 8 to 10 residential lots. Grading for the project is expected to involved cuts and fills of 1 to 3 feet in
order to create properly draining building pads and an access road. We understand that the project may include a bio-swale along the northeast side of the project adjacent to the canal.

2.0 REGIONAL GEOLOGY

2.1 GEOLOGIC SETTING

The study area is located in the Coast Ranges geomorphic province of California. The Coast Ranges are characterized by a series of northwest-trending valleys and mountain ranges. The bedrock in this region has been folded and faulted in a tectonic setting that is experiencing translational and compressional deformations of the earth’s crust.

As depicted on Figure 3, regional geologic mapping by Graymer et al. (1994), the site is located in a broad valley underlain by thick alluvial deposits. Mapping by Witter et al. (2006) indicates that the site is underlain by late Pleistocene alluvial fan deposits and has a low liquefaction susceptibility.

2.2 FAULTING

The site is not located within a State of California Earthquake Fault Zone (EFZ) for known active faults. No faults are shown crossing the site on other regional geologic maps including maps prepared by Graymer (1994), Dibblee (1980) or Crane (1988).

2.3 SEISMICITY

The nearest known active fault is the Concord fault located approximately 1 mile northeast of the site. The Calaveras, Hayward and San Andreas faults are located approximately 3 miles, 16 miles and 40 miles, respectively, to the southwest. The Greenville-Marsh Creek fault is located about 5 miles to the northeast.

Because of the presence of nearby active faults, including the San Andreas Fault Zone, the region is considered seismically active. Numerous small earthquakes occur every year in the region, and large (>M7) earthquakes have been recorded and can be expected to occur in the future.

3.0 AERIAL PHOTOGRAPH INTERPRETATION

Several sets of aerial photographs (see list of references) were examined to study geomorphic features that could be associated with drainage and previous grading in the vicinity of the site. In Google imagery dated 1939, we observed indications of a subtle drainage swale crossing the central portion of the site with a curved alignment. The swale was grass lined and the flow line of the swale did not appear to be more than 1 to 2 feet below adjacent grades. The approximate location of this former drainage swale is shown on the attached Figure 2.
4.0 FIELD EXPLORATION

The field exploration for this study was conducted on February 4, 2014, and consisted of drilling two exploratory borings at the approximate locations shown on Figure 2. The field exploration locations were obtained by taping or pacing from existing features; therefore, they should be considered accurately located only to the degree implied by the method used.

The borings were drilled to depths of about 21.5 to 51.5 feet below existing grades, using a truck-mounted drilling rig equipped with 6-inch-diameter solid flight augers. An ENGEIO Engineer logged the boreholes in the field and collected soil samples using a 3-inch O.D. California-type split-spoon sampler fitted with 6-inch-long brass liners or 2-inch O.D. split-spoon sampler. The split-spoon sampler was advanced by a 140-pound hammer with a 30-inch drop. The penetration of the sampler into the native materials is field recorded as the number of blows needed to drive the sampler 18 inches in 6-inch increments. Results on the boring logs are recorded as the number of blows required for the last one foot of penetration. No correction factors have been applied to field blow counts presented on the borelogs.

The field logs were used to develop the report borelogs (Appendix A). The logs depict subsurface conditions within the borings for the date of drilling; however, subsurface conditions may vary with time. The boreholes were backfilled to the ground surface with cement grout on the day of the field exploration.

4.1 LABORATORY TESTING

We performed the following laboratory tests on select near-surface samples recovered during our field exploration activities:

<table>
<thead>
<tr>
<th>Soil Characteristic</th>
<th>Testing Method</th>
<th>Location of Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atterberg Limits</td>
<td>ASTM D-4318</td>
<td>Appendix B</td>
</tr>
<tr>
<td>Moisture Content/Dry Density</td>
<td>ASTM D-2216</td>
<td>Boring Logs</td>
</tr>
</tbody>
</table>

The individual test results are presented in Appendix B.

4.2 SUBSURFACE CONDITIONS

Alluvial deposits were encountered in the borings to the terminal depths. The alluvium encountered generally consists of brown and gray silty clay. The clayey deposits are generally very stiff to hard above the groundwater table and become stiff to very stiff below groundwater table. Laboratory testing indicates that the near-surface alluvial soils have high plasticity (Plasticity Index of 30).

In the southern portion of the site, the alluvial deposits are covered with a layer of fill material. Based on the findings of Boring 1-B1, the existing fill appears to range up to about 4 feet thick.
The existing fill encountered consists of clay with some sand and gravel. No debris or deleterious material was observed within the existing fill. It appears that the existing fill was derived from excavation of the canal along the northeast side of the site.

4.3 GROUNDWATER

Groundwater was encountered in Borings 1-B1 and 1-B2 at depths of about 13 feet and 8½ feet, respectively, below the existing ground surface at end of drilling. This groundwater level is close to the level of water observed in the adjacent canal. Fluctuations in groundwater levels occur seasonally and over a period of years because of variations in precipitation, temperature, irrigation, or other factors.

5.0 CONCLUSIONS

From a geologic and geotechnical standpoint, the study area is generally suitable for the proposed residential development. The preliminary recommendations in this report should be considered in the initial planning for the project. Design-level explorations will be required to develop recommendations for site grading and foundations.

Potential geologic hazards in the study area include expansive near-surface soils, existing fill and seismic shaking. These potential hazards and other geotechnical issues relevant to the site are discussed below.

5.1 SEISMIC HAZARDS

Potential seismic hazards resulting from a nearby moderate to major earthquake can generally be classified as primary and secondary. The primary effect is ground rupture, also called surface faulting. The common secondary seismic hazards include ground shaking, ground lurching, soil liquefaction, lateral spreading and landsliding. The following sections present a discussion of these hazards as they apply to the site.

Based on topographic setting, the risk from earthquake-induced landsliding, tsunamis and seiches is considered low to negligible at the site.

5.1.1 Ground Rupture

The site is not located within a State of California Earthquake Fault Hazard Zone and no known active faults cross the site. The risk of surface fault rupture at the site is considered low.

5.1.2 Ground Shaking

An earthquake of moderate to high magnitude generated within the San Francisco Bay Region could cause considerable ground shaking at the site, similar to that which has occurred in the past. To mitigate the shaking effects, all structures should be designed using sound engineering judgment and the latest California Building Code (CBC) requirements, as a minimum.
Seismic design provisions of current building codes generally prescribe minimum lateral forces, applied statically to the structure, combined with the gravity forces of dead-and-live loads. The code-prescribed lateral forces are generally considered to be substantially smaller than the comparable forces that would be associated with a major earthquake. Therefore, structures should be able to: (1) resist minor earthquakes without damage, (2) resist moderate earthquakes without structural damage but with some nonstructural damage, and (3) resist major earthquakes without collapse but with some structural as well as nonstructural damage. Conformance to the current building code recommendations does not constitute any kind of guarantee that significant structural damage would not occur in the event of a maximum magnitude earthquake; however, it is reasonable to expect that a well-designed and well-constructed structure will not collapse or cause loss of life in a major earthquake (SEAOC, 1996).

5.1.3 Ground Lurching

Ground lurching is a result of the rolling motion imparted to the ground surface during energy released by an earthquake. Such rolling motion can cause ground cracks to form in weaker soils. The potential for the formation of these cracks is considered greater at contacts between deep alluvium and bedrock. Such an occurrence is possible at the site as in other locations in the Bay Area, but based on the site location, it is our opinion that the offset is expected to be minor. Recommendations for site preparation and grading will be provided that are intended to reduce the potential for lurch cracking.

5.1.4 Liquefaction

Liquefaction is a phenomenon in which saturated, loose or medium dense, cohesionless soils are subject to a temporary, but essentially total, loss of shear strength because of pore pressure build-up under the reversing cyclic shear stresses associated with earthquakes. Alluvial deposits consisting of stiff clay were encountered in our exploration to depths of about 52 feet that are not considered susceptible to liquefaction. On this basis, the potential for liquefaction at the site appears to be low.

5.1.5 Lateral Spreading

Lateral spreading is a failure within a weaker soils (possibly due to liquefaction) that causes the overlying soil mass to move toward a free face or down a gentle slope. Generally, effects of lateral spreading are most significant at the free face or the crest of a slope and diminish with distance from the slope. Alluvial deposits consisting of stiff clay were encountered in our preliminary exploration that are not considered susceptible to liquefaction or lateral spreading. On this basis, the potential for lateral spreading at the site appears to be low.

5.2 EXPANSIVE SOILS

Near-surface soil samples tested indicate the site soils have a high expansion potential (PI of 30). Expansive soils shrink and swell as a result of moisture changes. This can cause heaving and cracking of slabs-on-grade, pavements, and structures founded on shallow foundations. Structures
can be supported on structural reinforced mat foundations that are designed to accommodate shrinking and swelling subgrade soils.

Successful construction on expansive soils requires special attention during grading. It is imperative to keep exposed soils moist by occasional sprinkling. If the soils dry, it is extremely difficult to remoisturize the soils (because of their clayey nature) without excavation, moisture conditioning, and recompaction.

Conventional grading operations, incorporating fill placement specifications tailored to the expansive characteristics of the soil, and use of a mat foundation (either post-tensioned or conventionally reinforced) are common, generally cost-effective measures to address the expansive potential of the foundation soils. Based upon our initial findings, the effects of expansive soils are expected to pose a low impact when properly mitigated.

5.3 CANAL BANK STABILITY

As noted above, a canal is located along the northeast side of the property. The flow line of the canal is typically about 8 to 10 feet below the adjacent grades. Where the canal crosses Risdon Road and David Avenue, concrete structures limit the potential for vertical and horizontal erosion of the canal. The canal banks are currently vegetated with grasses and scattered trees. It appears that some sections of the canal bank are underlain by riprap revetment.

Although the canal slopes do not appear to be experiencing bank erosion or instability, we do recommend that a setback for improvements be maintained to allow for canal maintenance. For planning purposes, we recommend that all improvements associated with the project be set back at least 15 feet from the top of canal bank. However, it should be noted that the County/City requirements for canal bank setback may have more stringent setback specifications.

5.4 EXISTING FILLS

The southern portion of the site is covered with a layer of existing fill that appears to range up to about 4 feet thick. The existing fill is not documented as engineered fill and its content and engineering properties could vary across the fill area. The existing fill could undergo vertical movement that is not easily characterized and could ultimately be inadequate for support of the proposed building loads. We recommend that the existing fill be removed during grading activities and replaced as engineered fill with appropriate moisture conditioning and compaction.

The extent and quality of existing fills should be further evaluated at the time of design-level study.

5.5 EXISTING WELL

As indicated on the attached Site Plan, an existing well was observed onsite. The well should be abandoned in accordance with City and/or County requirements.
5.6 CORROSION POTENTIAL

Sampling and testing for corrosion potential on foundation concrete and buried metal was not included in this preliminary study. Baseline sampling/testing is recommended during our design-level study to determine the corrosion potential.

6.0 PRELIMINARY RECOMMENDATIONS

The following recommendations are for initial land planning and preliminary estimating purposes. Final recommendations regarding site grading and foundation construction will be provided after additional site-specific exploration has been undertaken.

6.1 DEMOLITION AND STRIPPING

Site development would commence with the removal of existing foundations, utilities, vegetation, and surface and subsurface improvements. All debris or soft compressible soils should be removed from any location to be graded, from areas to receive fill or structures, or those areas to serve as borrow. The depth of removal of such materials should be determined by the Geotechnical Engineer in the field at the time of grading.

Existing vegetation should be removed from areas to receive fill or structures, or those areas to serve for borrow. Tree roots should be removed down to a depth of at least 3 feet below finished grade. The actual depths of tree root removal should be determined by the Geotechnical Engineer’s representative in the field. Subject to approval by the Landscape Architect, strippings and organically contaminated soils can be used in landscape areas. Otherwise, such soils should be removed from the project site. Any topsoil that will be retained for future use in landscape areas should be stockpiled in areas where it will not interfere with grading operations.

6.2 EXISTING FILL

Existing fill, utility trench backfill, and existing foundation backfill are considered undocumented and may not have been placed in accordance with current engineering standards. Depending upon the limits of grading and planned civil cuts, existing fills should be subexcavated to expose underlying competent native soils that are approved by the Geotechnical Engineer.

6.3 SELECTION OF MATERIALS

With the exception of construction debris (wood, brick, asphalt, concrete, metal, etc.), organically contaminated materials (soil which contains more than 2 percent organic content by weight), and environmentally impacted soils (if any), we anticipate the site soils are suitable for use as engineered fill provided they are broken down to 6 inches or less in size. Other materials and debris, including trees with their root balls, should be removed from the project site.
6.4 GRADED SLOPES

It is anticipated that graded slopes will be limited to relatively small steps between the lots. In general, graded slopes should be planned at gradients that are no steeper than 2:1 (horizontal:vertical).

6.5 BUILDING PAD TREATMENT

For preliminary purposes, based on the expansive characteristics of the soils tested, the upper 3 feet of pad subgrades (cut, fill, and cut-fill transition) should consist of uniform engineered fill. Depending on the planned pad grades, this pad treatment may necessitate removal and replacement of material below existing grades.

6.6 FILL PLACEMENT

For land planning and cost estimating purposes, the following compaction requirements should be anticipated:

General fill areas:

- Test Procedures: ASTM D-1557.
- Required Moisture Content: Not less than 4 percentage points above optimum moisture content.
- Minimum Relative Compaction: Not less than 90 percent.

Relative compaction refers to the in-place dry density of soil expressed as a percentage of the maximum dry density of the same material.

Additional compaction requirements may be required for near-surface building pad foundation soils and retaining wall backfill soils. These additional requirements will be developed during design-level exploration.

6.7 RESIDENTIAL FOUNDATION DESIGN

In order to reduce the effects of the potentially expansive soils, the foundations should be sufficiently stiff to move as rigid units with minimum differential movements. This can be accomplished with construction of relatively rigid mat foundations, such as post-tensioned mats. Other types of foundation systems may also be considered during design-level study if desired.

For preliminary purposes, a minimum mat thickness of 10 to 12 inches should be anticipated. A tough, water vapor retarding membrane should also be considered below the mats to reduce moisture condensation under floor coverings. The vapor retarder should meet ASTM E 1745 – 11 Class A requirements for water vapor permeance, tensile strength, and puncture resistance. Vapor transmission through the mat foundations can also be reduced by using high strength concrete with a low water-cement ratio.
6.8 STORMWATER TREATMENT

We understand that a bio-swale is being considered along the northeastern side of the development area. Due to the anticipated high clay content and density of the underlying soils, the near-surface site soils are not expected to have adequate permeability values to handle stormwater infiltration. Therefore, best management practices should assume that little stormwater infiltration will occur at the site.

Although infiltration rates are expected to be low, clayey soils can be weakened by water infiltration and saturation, which can cause problems for adjacent improvements. Bioretention cells or bioswales should be designed with impermeable liners, subdrains, and their excavations (even temporary) should be situated outside a 1:1 line of projection extending downwards from nearby improvements (such as curb, street, site wall, or house) unless retaining side walls are planned. Bioretention soil treatment mixes should be compacted to at least 85 percent relative compaction.

7.0 LIMITATIONS AND UNIFORMITY OF CONDITIONS

This preliminary report is issued with the understanding that it is the responsibility of the owner to transmit the information and recommendations of this preliminary report to developers, owners, buyers, architects, engineers, and designers for the project so that the necessary steps can be taken by the contractors and subcontractors to carry out such recommendations in the field. The conclusions and recommendations contained in this preliminary report are solely professional opinions.

The professional staff of ENGEO strives to perform its services in a proper and professional manner with reasonable care and competence but is not infallible. There are risks of earth movement and property damages inherent in land development. We are unable to eliminate all risks or provide insurance; therefore, we are unable to guarantee or warrant the results of our services.

This preliminary report is based upon field and other conditions discovered at the time of preparation of ENGEO’s preliminary report. This document must not be subject to unauthorized reuse that is, reusing without written authorization of ENGEO. Such authorization is essential because it requires ENGEO to evaluate the document’s applicability given new circumstances, not the least of which is passage of time. Actual field or other conditions will necessitate clarifications, adjustments, modifications or other changes to ENGEO’s documents. Therefore, ENGEO must be engaged to prepare the necessary clarifications, adjustments, modifications or other changes before construction activities commence or further activity proceeds. If ENGEO’s scope of services does not include on-study area construction observation, or if other persons or entities are retained to provide such services, ENGEO cannot be held responsible for any or all claims arising from or resulting from the performance of such services by other persons or entities, and from any or all claims arising from or resulting from clarifications, adjustments, modifications, discrepancies or other changes necessary to reflect changed field or other conditions.
SELECTED REFERENCES

Bortugno, E. J.; et al., 1991, Map Showing Recency of Faulting, San Francisco-San Jose Quadrangle USGS Map Sheet 5A.

California Division of Mines and Geology, 1993, State of California Special Studies Zones Map, Walnut Creek Quadrangle, California.

California Geological Survey, 2008, Guidelines for Evaluating and Mitigating Seismic Hazards in California; Special Publication 117A.

Crane, R. C.; 1988, Geologic Map of the Walnut Creek 7.5 minute Quadrangle, NCGS Field Trip Guide to the Geology of the San Ramon Valley & Environs.

Dibblee Jr., T. W., 1980, Preliminary Geologic Map of Walnut Creek Quadrangle, Contra Costa and Alameda Counties, California, USGS Open-File Map 80-351.

Dibblee Jr., T. W., 2005, Geologic Map of Walnut Creek Quadrangle, Contra Costa and Alameda Counties, California, Dibblee Geology Center Map #DF-149.

Google Earth, numerous images dating between 1939 and 2012, online Google Earth imagery.

LIST OF FIGURES

Figure 1 Vicinity Map
Figure 2 Site Plan
Figure 3 Regional Geologic Map
APPENDIX A

Boring Logs
Key to Boring Logs

<table>
<thead>
<tr>
<th>Major Types</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravels more than half coarse fraction is larger than No. 4 sieve size</td>
<td>Clean gravels with less than 5% fines</td>
</tr>
<tr>
<td>Gravels with over 12% fines</td>
<td>GW - Well graded gravels or gravel-sand mixtures</td>
</tr>
<tr>
<td></td>
<td>GP - Poorly graded gravels or gravel-sand mixtures</td>
</tr>
<tr>
<td>Sands more than half coarse fraction is smaller than No. 4 sieve size</td>
<td>Clean sands with less than 5% fines</td>
</tr>
<tr>
<td>Sands with over 12% fines</td>
<td>SW - Well graded sands, or gravelly sand mixtures</td>
</tr>
<tr>
<td></td>
<td>SP - Poorly graded sands or gravelly sand mixtures</td>
</tr>
<tr>
<td>Silts and clays liquid limit 50% or less</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ML - Inorganic silt with low to medium plasticity</td>
</tr>
<tr>
<td></td>
<td>CL - Inorganic clay with low to medium plasticity</td>
</tr>
<tr>
<td></td>
<td>OL - Low plasticity organic silts and clays</td>
</tr>
<tr>
<td>Silts and clays liquid limit greater than 50%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MH - Elastic silt with high plasticity</td>
</tr>
<tr>
<td></td>
<td>CH - Fat clay with high plasticity</td>
</tr>
<tr>
<td></td>
<td>OH - Highly plastic organic silts and clays</td>
</tr>
<tr>
<td>Highly organic soils</td>
<td>PT - Peat and other highly organic soils</td>
</tr>
</tbody>
</table>

For fine-grained soils with 15 to 29% retained on the #200 sieve, the words "with sand" or "with gravel" (whichever is predominant) are added to the group name.

For fine-grained soils with >30% retained on the #200 sieve, the words "sandy" or "gravelly" (whichever is predominant) are added to the group name.

Grain Sizes

<table>
<thead>
<tr>
<th>U.S. Standard Series Sieve Size</th>
<th>Clear Square Sieve Openings</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>3/4"</td>
</tr>
<tr>
<td>40</td>
<td>3"</td>
</tr>
<tr>
<td>10</td>
<td>12"</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Relative Density

<table>
<thead>
<tr>
<th>Sands and Gravels</th>
<th>Bolds/Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Loose</td>
<td>0-4</td>
</tr>
<tr>
<td>Loose</td>
<td>4-10</td>
</tr>
<tr>
<td>Medium Dense</td>
<td>10-30</td>
</tr>
<tr>
<td>Dense</td>
<td>30-50</td>
</tr>
<tr>
<td>Very Dense</td>
<td>Over 50</td>
</tr>
</tbody>
</table>

Consistency

<table>
<thead>
<tr>
<th>Silts and Clays</th>
<th>Strength*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Soft</td>
<td>0-1/4</td>
</tr>
<tr>
<td>Soft</td>
<td>1/4-1/2</td>
</tr>
<tr>
<td>Medium Stiff</td>
<td>1/2-1</td>
</tr>
<tr>
<td>Stiff</td>
<td>1-2</td>
</tr>
<tr>
<td>Very Stiff</td>
<td>2-4</td>
</tr>
<tr>
<td>Hard</td>
<td>Over 4</td>
</tr>
</tbody>
</table>

Moisture Condition

- **Dry**
- **Moist**
- **Wet**

- Dusty, dry to touch
- Damp but no visible water
- Visible freewater

Line Types

- Solid - Layer Break
- Dashed - Gradational or approximate layer break

Ground-Water Symbols

- Groundwater level during drilling
- Stabilized groundwater level

(S.P.T.) Number of blows of 140 lb. hammer falling 30" to drive a 2-inch O.D. (1-3/8 inch I.D.) sampler

* Unconfined compressive strength in tons/sq. ft., asterisk on log means determined by pocket penetrometer
<table>
<thead>
<tr>
<th>Depth (in Feet)</th>
<th>Sample Type</th>
<th>DESCRIPTION</th>
<th>Top Symbol</th>
<th>Water Level</th>
<th>Blasting Control</th>
<th>Drivable Strength</th>
<th>Unconfined Strength</th>
<th>Test</th>
<th>Wall Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>LEAN CLAY WITH SAND AND GRAVEL (CL), brown, hard, moist, 15 to 30 % fine to coarse grained sand, 10 to 20 % fine gravel, angular (FLA)</td>
<td></td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>LEAN CLAY WITH SAND AND GRAVEL (CL), dark brown, hard, moist, nodules, 5 to 20 % fine to coarse grained sand, 5 to 20 % fine gravel, subrounded to subangular (NATIVE)</td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>> 4.5"</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>67</td>
<td>12.6</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>LEAN CLAY WITH SAND AND GRAVEL (CL), light brown, very stiff, dry to moist, 5 to 20 % fine to coarse grained sand, 5 to 20 % fine gravel, subrounded to subangular</td>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>LEAN CLAY (CL), brown, very stiff, moist, <4% coarse angular sand</td>
<td></td>
<td>37</td>
<td>19.7</td>
<td>109</td>
<td></td>
<td></td>
<td>4"</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>SANDY LEAN CLAY WITH SILT (CL), brown and olive brown, very stiff, moist, 20 to 40 % fine grained sand</td>
<td></td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3"</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Sand Grades Out</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATE DRILLED: 2/4/2014
HOLE DEPTH: Approx. 51½ ft.
HOLE DIAMETER: 4.0 in.
SURF ELEV: 75 ft.
LOGGED / REVIEWED BY: D. Bernard / MT
DRILLING CONTRACTOR: West Coast Exploration
DRILLING METHOD: Solid Flight Auger
HAMMER TYPE: 140 lb. Rope and Cathhead

Geotechnical Feasibility
1890 Ridon Road
Concord, CA
10873.000.000
<table>
<thead>
<tr>
<th>Depth in Feet</th>
<th>Sample Type</th>
<th>DESCRIPTION</th>
<th>Top Symbol</th>
<th>Water Level</th>
<th>Blowing Coefficient</th>
<th>Unconfined Strength (psf)</th>
<th>Wall Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>FAT CLAY (CH), brown and olive brown, stiff, moist.</td>
<td></td>
<td>30</td>
<td>1.25"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>LEAN CLAY (CL), brown and olive brown, very stiff, moist, carbonatites and iron oxide staining.</td>
<td></td>
<td>38</td>
<td>3.0"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>SANDY LEAN CLAY (CL), brown and olive brown, stiff, wet, carbonatites, 20 to 40% fine grained sand</td>
<td></td>
<td>24</td>
<td>1.25"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>LEAN CLAY (CL), brown and olive brown, very stiff, moist</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>LEAN CLAY, brownish gray and gray, stiff, moist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LOG OF BORING 1-B1

Geotechnical Feasibility
1890 Ridon Road
Concord, CA
10873.000.000

DATE DRILLED: 2/4/2014
HOLE DEPTH: Approx. 51½ ft.
HOLE DIAMETERS: 4.0 in.
SURF ELEV (ft): Approx. 75 ft.

LOGGED / REVIEWED BY: D. Bernardi / MT
DRILLING CONTRACTOR: West Coast Exploration
DRILLING METHOD: Solid Flight Auger
HAMMER TYPE: 140 lb. Rope and Cathead

<table>
<thead>
<tr>
<th>Depth in Feet</th>
<th>Sample Type</th>
<th>DESCRIPTION</th>
<th>Log Symbol</th>
<th>Water Level</th>
<th>Blowing Count (ft)</th>
<th>Blowing Count (ft)</th>
<th>Unconfined Strength (psi)</th>
<th>Wall Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td></td>
<td>LEAN CLAY, brownish gray and gray, stiff, moist</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Fine grained sand</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Cherty (54), brown, gray, stiff, moist</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 50 | | Bottom of boring at 81.5 feet bgs
Groundwater encountered at 12 feet during drilling
Groundwater measured at 13 feet after drilling | | | | | | |
<table>
<thead>
<tr>
<th>Depth in Feet</th>
<th>Sample Type</th>
<th>Description</th>
<th>Log Symbol</th>
<th>Water Level</th>
<th>Blow Count/ft.</th>
<th>Dry Unit Weight (lb)</th>
<th>Wall Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LEAN CLAY (G), dark brown, hard, moist, contains roots (TOPSOIL)</td>
<td></td>
<td></td>
<td>73</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>LEAN CLAY WITH SAND AND GRAVEL (G), dark brown, hard, moist, contains roots, 10 to 20 % fine to coarse grained sand, 10 to 20 % fine gravel, subrounded</td>
<td></td>
<td></td>
<td>53</td>
<td>14.9</td>
<td>116</td>
<td>> 4.5”</td>
</tr>
<tr>
<td>5</td>
<td>Becomes brown</td>
<td></td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>LEAN CLAY (G), brown, very stiff, moist</td>
<td></td>
<td></td>
<td>60</td>
<td>21</td>
<td>106</td>
<td>3.0”</td>
</tr>
<tr>
<td>15</td>
<td>LEAN CLAY WITH SAND AND GRAVEL (G), brown, very stiff, moist, contains roots, 5 to 20 % fine grained sand</td>
<td></td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>LEAN CLAY WITH THE F (G), brown to dark brown, medium stiff to stiff, moist</td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td>1.0”</td>
</tr>
</tbody>
</table>
LOG OF BORING 1-B2

Geotechnical Feasibility
1890 Ridon Road
Concord, CA 10873.000.000

DATE DRILLED: 2/4/2014
HOLE DEPTH: Approx. 21½ ft.
HOLE DIAMETER: 4.0 in.
SURF ELEV: 71 ft.

LOGGED / REVIEWED BY: D. Bernardi / MT
DRILLING CONTRACTOR: West Coast Exploration
DRILLING METHOD: Solid Flight Auger
HAMMER TYPE: 140 lb. Rope and Cathead

<table>
<thead>
<tr>
<th>Depth in Feet</th>
<th>Sample Type</th>
<th>DESCRIPTION</th>
<th>Log Symbol</th>
<th>Water Level</th>
<th>Blow Count/ft.</th>
<th>Moisture-content</th>
<th>Unconf. Strength (psf)</th>
<th>Wall Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.5</td>
<td>LEAN CLAY (GL), brown and olive brown, stiff to very stiff, moist</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>2.0"</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B

Laboratory Test Data
LIQUID AND PLASTIC LIMITS TEST REPORT

Dashed line indicates the approximate upper limit boundary for natural soils

<table>
<thead>
<tr>
<th>MATERIAL DESCRIPTION</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>%<#40</th>
<th>%<#200</th>
<th>USCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>•</td>
<td></td>
<td></td>
<td>30</td>
<td>47</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>See exploration logs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project No. 10873.000.000 Client: Zheng Tan

Project: 1890 Risdon Road

• Depth: 3-4 feet Sample Number: 1-B2 @ 3-4

Remarks: • PI: ASTM D4318

Tested By: JL Checked By: DS
My project

IPaC Trust Resource Report

Generated May 01, 2015 01:25 PM MDT
Project Description

NAME
My project

PROJECT CODE
BIKTD-EDRWN-FRJFP-N6O3Z-C65E5M

LOCATION
Contra Costa County, California

DESCRIPTION
No description provided

U.S. Fish & Wildlife Contact Information

Species in this report are managed by:

Sacramento Fish And Wildlife Office
Federal Building
2800 COTTAGE WAY, ROOM W-2605
Sacramento, CA 95825-1846
(916) 414-6600
Endangered Species

Proposed, candidate, threatened, and endangered species that are managed by the Endangered Species Program and should be considered as part of an effect analysis for this project.

Amphibians

California Red-legged Frog

DESCRIPTION
This subspecies of red-legged frog occurs from sea level to elevations of about 1,500 meters (5,200 feet). It has been extirpated from 70 percent of its former range and now is found primarily in coastal drainages of central California, from Marin County, California, south to northern Baja California, Mexico. Potential threats to the species include elimination or degradation of habitat from land development and land use activities and habitat invasion by non-native aquatic species.

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=D02D

CRITICAL HABITAT
There is final critical habitat designated for this species.

California Tiger Salamander (sonoma) U.S.A. (CA - Sonoma County)

DESCRIPTION
It is a large, stocky, terrestrial salamander with a broad, rounded snout. Adults males are about 8 inches long, females a little less than 7. Coloration consists of white or pale yellow spots or bars on a black background on the back and sides. The belly varies from almost uniform white or pale yellow to a variegated pattern of white or pale yellow and black. The salamander's small eyes protrude from their heads. They have black irises.

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=D01T

CRITICAL HABITAT
There is final critical habitat designated for this species.
Birds

California Clapper Rail

DESCRIPTION
The California clapper rail (Rallus longirostris obsoletus) is one of the largest rails (family Rallidae), measuring 13-19 inches from bill to tail. It is characterized by its hen-like appearance, a long, slightly downward-curving bill, olive-brown upper parts, a cinnamon-buff colored breast, dark flanks crossed by white bars and white undertail coverts which are often exposed when the bird is agitated.

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=B04A

CRITICAL HABITAT
No critical habitat has been designated for this species.

California Least Tern

DESCRIPTION
Long, narrow wings and a broad, forked tail identify the California least tern. Also have black-capped head and black-tipped, pale gray wings of the least tern contrast with its white body. It bears a white blaze across its forehead, dark forewings, black-tipped yellow bill, and yellowish feet. Is less the 25 cm when full grown and has 75 cm wingspan.

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=B03X

CRITICAL HABITAT
No critical habitat has been designated for this species.

Crustaceans

Vernal Pool Fairy Shrimp

DESCRIPTION
No description available

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=K03G

CRITICAL HABITAT
There is final critical habitat designated for this species.
Fishes

Delta Smelt

DESCRIPTION
No description available

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=E070

CRITICAL HABITAT
There is **final** critical habitat designated for this species.

Steelhead Northern California DPS - See 50 CFR 223.102

DESCRIPTION
Steelhead trout (Oncorhynchus mykiss) belong to the family Salmonidae which includes all salmon, trout, and chars. Steelhead are similar to some Pacific salmon in their life cycle and ecological requirements. They are born in fresh water streams, where they spend their first 1-3 years of life. They then emigrate to the ocean where most of their growth occurs. After spending between one to four growing seasons in the ocean, steelhead return to their native fresh water stream to spawn. Unlike Pac...

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=E08D

CRITICAL HABITAT
There is **final** critical habitat designated for this species.

Flowering Plants

Antioch Dunes Evening-primrose

DESCRIPTION
No description available

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=Q1ZN

CRITICAL HABITAT
There is **final** critical habitat designated for this species.

Contra Costa Wallflower

DESCRIPTION
No description available

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=Q1WA

CRITICAL HABITAT
There is **final** critical habitat designated for this species.

Insects

Callippe Silverspot Butterfly

DESCRIPTION
No description available

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=I019

CRITICAL HABITAT
No **critical habitat** has been designated for this species.
Reptiles

Alameda Whipsnake (=striped Racer)

DESCRIPTION
Adults reach a length of 3 to 4 feet (91 to 122 centimeters). Their back is colored sooty black or dark brown with a distinct yellow-orange stripe down each side. The front part of their underside is orange-rufous colored. The midsection is cream colored. The rear section and tail are pinkish.

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=C04A

CRITICAL HABITAT
There is final critical habitat designated for this species.

Giant Garter Snake

DESCRIPTION
Dorsal background coloration (the basic color on the snake's back) varies from brownish to olive with a checkered pattern of black spots, separated by a yellow dorsal stripe and two light colored lateral stripes. Background coloration and prominence of a black checkered pattern and the three light stripes are geographically and individually variable. The ventral surface (the snake's underside) is cream to olive or brown and sometimes infused with orange, especially in northern populations.

https://ecos.fws.gov/speciesProfile/profile/speciesProfile.action?spcode=C057

CRITICAL HABITAT
No critical habitat has been designated for this species.

Critical Habitats
Potential effects to critical habitat(s) within the project area must be analyzed along with the endangered species themselves.

There is no critical habitat within this project area
Migratory Birds

Birds are protected by the Migratory Bird Treaty Act and the Bald and Golden Eagle Protection Act.

Any activity which results in the take of migratory birds or eagles is prohibited unless authorized by the U.S. Fish and Wildlife Service (1). There are no provisions for allowing the take of migratory birds that are unintentionally killed or injured.

You are responsible for complying with the appropriate regulations for the protection of birds as part of this project. This involves analyzing potential impacts and implementing appropriate conservation measures for all project activities.

Allen's Hummingbird

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Breeding

DESCRIPTION
No description available

Bald Eagle

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Year-round

DESCRIPTION
A large raptor, the bald eagle has a wingspread of about 7 feet. Adults have a dark brown body and wings, white head and tail, and a yellow beak. Juveniles are mostly brown with white mottling on the body, tail, and undersides of wings. Adult plumage usually is obtained by the 6th year. In flight, the bald eagle often soars or glides with the wings held at a right angle to the body.

Bell's Sparrow

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Year-round

DESCRIPTION
The Sage Sparrow is a medium-sized bird ranging from 12 – 15 cm in length. It is generally brownish-gray in color with a grayer head and a more brown-colored back and wings. Some distinctive features of the Sage Sparrow include a white eye ring, a white spot in front of the eye, white streaks along the side of the lower jaw, and sometimes a white streak in the middle of its forehead. The Sage Sparrows under parts are mostly white with a contrasting much darker blackish, brown tail. The Sage Sp...

Black Oystercatcher

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Year-round

DESCRIPTION
No description available
Black Rail

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Breeding

DESCRIPTION
No description available

Burrowing Owl

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Year-round

DESCRIPTION
No description available

Common Yellowthroat

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Breeding

DESCRIPTION
No description available

Costa's Hummingbird

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Breeding

DESCRIPTION
No description available

Fox Sparrow

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Wintering

DESCRIPTION
No description available

Lawrence's Goldfinch

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Breeding

DESCRIPTION
No description available
Least Bittern

This is a bird of conservation concern and has the highest priority for conservation

SEASON
 Breeding

DESCRIPTION
 No description available

Lesser Yellowlegs

This is a bird of conservation concern and has the highest priority for conservation

SEASON
 Wintering

DESCRIPTION
 No description available

Lewis's Woodpecker

This is a bird of conservation concern and has the highest priority for conservation

SEASON
 Wintering

DESCRIPTION
 No description available

Loggerhead Shrike

This is a bird of conservation concern and has the highest priority for conservation

SEASON
 Wintering

DESCRIPTION
 No description available

Long-billed Curlew

This is a bird of conservation concern and has the highest priority for conservation

SEASON
 Wintering

DESCRIPTION
 The Long-billed Curlew is a very large shorebird of about 50-65 cm in length. Its distinctive features include a very long bill (11-22 cm) and long legs. Its plumage is a rich pale brown color intermingled with cinnamon and pink. Its flight feathers are a contrasting orange-brown color. Female and male plumage is similar, but females are slightly larger with a longer bill. Juveniles have similar, but slightly different coloring than adults, including less distinct streaking on their undersides, ...

Marbled Godwit

This is a bird of conservation concern and has the highest priority for conservation

SEASON
 Wintering

DESCRIPTION
 No description available
Mountain Plover

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Wintering

DESCRIPTION
The Mountain Plover is a fairly large bird of about 21-23 cm. Breeding birds have sandy brown coloring with white on the forehead throat and chest, bright white under the wings, a black crown, black bill, and a distinctive black stripe extending from the back of the bill to the eye. Non-breeders look similar to breeders, but the black coloring on the crown and face is replaced by pale brown coloring with some slight variation in coloring on the rest of the body. Juvenile birds are similar to no...

Nuttall's Woodpecker

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Year-round

DESCRIPTION
No description available

Oak Titmouse

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Year-round

DESCRIPTION
No description available

Peregrine Falcon

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Year-round

DESCRIPTION
No description available

Short-billed Dowitcher

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Wintering

DESCRIPTION
No description available
Short-eared Owl

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Wintering

DESCRIPTION
The short-eared owl is an owl of about 0.7 to 0.8 lbs with females slightly larger in size than males. Plumage is brown, buff, white and rust colors. Patches of brown and buff occur mostly on the back side, while the underside is colored more lightly, being mostly white. Females and males have similar plumage. Some distinguishing characteristics of this owl are its gray white fascial disk, and black coloring around yellow eyes. Juveniles have similar plumage to adults, but upper parts and head a...

Swainson’s Hawk

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Wintering

DESCRIPTION
Swainson’s Hawks are broad-winged Buteos of between 48 and 56 cm in length with females slightly larger than males. Males and females have similar plumage. Swainsons Hawks are polymorphic with pale, light and intermediate morph plumage ranging from dark to light or rufous in color. Most Swainsons Hawks have a sharp contrast between the wing linings and flight feathers. However, some of the darkest Swainsons Hawks do not have this distinction. Swainsons Hawks are distinguishable from other Bu...

Tricolored Blackbird

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Year-round

DESCRIPTION
The Tricolored Blackbird is a medium-sized (18-24cm total length), sexually dimorphic North American passerine (Beedy, Edward, and Hamilton III 1999). Adult males are typically larger than females, and are black with bright red and white plumage on the wing shoulder. Adult females have sooty brown-black plumage with distinct grayish streaks, a relatively white chin and throat, and a smaller reddish shoulder-patch. Banding studies indicate a lifespan of 12-13 years (DeHaven and Neff 1973, Kenn...

Yellow Rail

This is a bird of conservation concern and has the highest priority for conservation

SEASON
Wintering

DESCRIPTION
No description available
Refuges

Any activity proposed on National Wildlife Refuge lands must undergo a 'Compatibility Determination' conducted by the Refuge. If your project overlaps or otherwise impacts a Refuge, please contact that Refuge to discuss the authorization process.

There are no refuges within this project area.
Wetlands

Impacts to [NWI wetlands](https://www.nwi.usgs.gov) and other aquatic habitats from your project may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal Statutes.

Project proponents should discuss the relationship of these requirements to their project with the Regulatory Program of the appropriate [U.S. Army Corps of Engineers District](https://www.armycorps.gov).

DATA LIMITATIONS

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

DATA EXCLUSIONS

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

DATA PRECAUTIONS

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

Wetland data is unavailable at this time.
APPENDIX F

HISTORIC RECORDS SEARCH (CONFIDENTIAL)
The Historical Records Search contains sensitive and confidential information and is retained at the City of Concord offices under separate cover. The relevant historical information contained within the results of the historic records search will be presented to the appropriate regulatory agencies in accordance with Federal and State requirements as applicable to the Proposed Project.
Appendix G

Screening Criteria Table 3-1
California Environmental Quality Act

Air Quality Guidelines

May 2010
Table 3-1
Operational-Related Criteria Air Pollutant and Precursor Screening Level Sizes

<table>
<thead>
<tr>
<th>Land Use Type</th>
<th>Operational Criteria Pollutant Screening Size</th>
<th>Operational GHG Screening Size</th>
<th>Construction-Related Screening Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-family</td>
<td>325 du (NOX)</td>
<td>56 du</td>
<td>114 du (ROG)</td>
</tr>
<tr>
<td>Apartment, low-rise</td>
<td>451 du (ROG)</td>
<td>78 du</td>
<td>240 du (ROG)</td>
</tr>
<tr>
<td>Apartment, mid-rise</td>
<td>494 du (ROG)</td>
<td>87 du</td>
<td>240 du (ROG)</td>
</tr>
<tr>
<td>Apartment, high-rise</td>
<td>510 du (ROG)</td>
<td>91 du</td>
<td>249 du (ROG)</td>
</tr>
<tr>
<td>Condo/townhouse, general</td>
<td>451 du (ROG)</td>
<td>78 du</td>
<td>240 du (ROG)</td>
</tr>
<tr>
<td>Condo/townhouse, high-rise</td>
<td>511 du (ROG)</td>
<td>92 du</td>
<td>252 du (ROG)</td>
</tr>
<tr>
<td>Mobile home park</td>
<td>450 du (ROG)</td>
<td>82 du</td>
<td>114 du (ROG)</td>
</tr>
<tr>
<td>Retirement community</td>
<td>487 du (ROG)</td>
<td>94 du</td>
<td>114 du (ROG)</td>
</tr>
<tr>
<td>Congregate care facility</td>
<td>657 du (ROG)</td>
<td>143 du</td>
<td>240 du (ROG)</td>
</tr>
<tr>
<td>Day-care center</td>
<td>53 ksf (NOX)</td>
<td>11 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Elementary school</td>
<td>271 ksf (NOX)</td>
<td>44 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Elementary school</td>
<td>2747 students (ROG)</td>
<td>-</td>
<td>3904 students (ROG)</td>
</tr>
<tr>
<td>Junior high school</td>
<td>285 ksf (NOX)</td>
<td>-</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Junior high school</td>
<td>2460 students (NOX)</td>
<td>46 ksf</td>
<td>3261 students (ROG)</td>
</tr>
<tr>
<td>High school</td>
<td>311 ksf (NOX)</td>
<td>49 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>High school</td>
<td>2390 students (NOX)</td>
<td>-</td>
<td>3012 students (ROG)</td>
</tr>
<tr>
<td>Junior college (2 years)</td>
<td>152 ksf (NOX)</td>
<td>28 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Junior college (2 years)</td>
<td>2865 students (ROG)</td>
<td>-</td>
<td>3012 students (ROG)</td>
</tr>
<tr>
<td>University/college (4 years)</td>
<td>1760 students (NOX)</td>
<td>320 students</td>
<td>3012 students (ROG)</td>
</tr>
<tr>
<td>Library</td>
<td>78 ksf (NOX)</td>
<td>15 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Place of worship</td>
<td>439 ksf (NOX)</td>
<td>61 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>City park</td>
<td>2613 acres (ROG)</td>
<td>600 acres</td>
<td>67 acres (PM10)</td>
</tr>
<tr>
<td>Racquet club</td>
<td>291 ksf (NOX)</td>
<td>46 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Racquetball/health</td>
<td>128 ksf (NOX)</td>
<td>24 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Quality restaurant</td>
<td>47 ksf (NOX)</td>
<td>9 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>High turnover restaurant</td>
<td>33 ksf (NOX)</td>
<td>7 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Fast food rest. w/ drive thru</td>
<td>6 ksf (NOX)</td>
<td>1 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Fast food rest. w/o drive thru</td>
<td>8 ksf (NOX)</td>
<td>1 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Hotel</td>
<td>489 rooms (NOX)</td>
<td>83 rooms</td>
<td>554 rooms (ROG)</td>
</tr>
<tr>
<td>Motel</td>
<td>688 rooms (NOX)</td>
<td>106 rooms</td>
<td>554 rooms (ROG)</td>
</tr>
<tr>
<td>Free-standing discount store</td>
<td>76 ksf (NOX)</td>
<td>15 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Free-standing discount store</td>
<td>87 ksf (NOX)</td>
<td>17 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Discount club</td>
<td>102 ksf (NOX)</td>
<td>20 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Regional shopping center</td>
<td>99 ksf (NOX)</td>
<td>19 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Electronic Superstore</td>
<td>95 ksf (NOX)</td>
<td>18 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Home improvement superstore</td>
<td>142 ksf (NOX)</td>
<td>26 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Strip mall</td>
<td>99 ksf (NOX)</td>
<td>19 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Hardware/paint store</td>
<td>83 ksf (NOX)</td>
<td>16 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Supermarket</td>
<td>42 ksf (NOX)</td>
<td>8 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Convenience market (24 hour)</td>
<td>5 ksf (NOX)</td>
<td>1 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Convenience market with gas pumps</td>
<td>4 ksf (NOX)</td>
<td>1 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Bank (with drive-through)</td>
<td>17 ksf (NOX)</td>
<td>3 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
</tbody>
</table>
Table 3-1
Operational-Related Criteria Air Pollutant and Precursor Screening Level Sizes

<table>
<thead>
<tr>
<th>Land Use Type</th>
<th>Operational Criteria Pollutant Screening Size</th>
<th>Operational GHG Screening Size</th>
<th>Construction-Related Screening Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>General office building</td>
<td>346 ksf (NOX)</td>
<td>53 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Office park</td>
<td>323 ksf (NOX)</td>
<td>50 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Government office building</td>
<td>61 ksf (NOX)</td>
<td>12 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Government (civic center)</td>
<td>149 ksf (NOX)</td>
<td>27 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Pharmacy/drugstore w/ drive through</td>
<td>49 ksf (NOX)</td>
<td>10 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Pharmacy/drugstore w/o drive through</td>
<td>48 ksf (NOX)</td>
<td>10 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Medical office building</td>
<td>117 ksf (NOX)</td>
<td>22 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Hospital</td>
<td>226 ksf (NOX)</td>
<td>39 ksf</td>
<td>277 ksf (ROG)</td>
</tr>
<tr>
<td>Hospital</td>
<td>334 beds (NOX)</td>
<td>84 ksf</td>
<td>337 beds (ROG)</td>
</tr>
<tr>
<td>Warehouse</td>
<td>864 ksf (NOX)</td>
<td>64 ksf</td>
<td>259 ksf (NOX)</td>
</tr>
<tr>
<td>General light industry</td>
<td>541 ksf (NOX)</td>
<td>121 ksf</td>
<td>259 ksf (NOX)</td>
</tr>
<tr>
<td>General light industry</td>
<td>72 acres (NOX)</td>
<td>-</td>
<td>11 acres (NOX)</td>
</tr>
<tr>
<td>General light industry</td>
<td>1249 employees (NOX)</td>
<td>-</td>
<td>540 employees (NOX)</td>
</tr>
<tr>
<td>General heavy industry</td>
<td>1899 ksf (ROG)</td>
<td>-</td>
<td>259 ksf (NOX)</td>
</tr>
<tr>
<td>General heavy industry</td>
<td>281 acres (ROG)</td>
<td>-</td>
<td>11 acres (NOX)</td>
</tr>
<tr>
<td>Industrial park</td>
<td>553 ksf (NOX)</td>
<td>65 ksf</td>
<td>259 ksf (NOX)</td>
</tr>
<tr>
<td>Industrial park</td>
<td>61 acres (NOX)</td>
<td>-</td>
<td>11 acres (NOX)</td>
</tr>
<tr>
<td>Industrial park</td>
<td>1154 employees (NOX)</td>
<td>-</td>
<td>577 employees (NOX)</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>992 ksf (NOX)</td>
<td>89 ksf</td>
<td>259 ksf (NOX)</td>
</tr>
</tbody>
</table>

Notes:
- du = dwelling units; ksf = thousand square feet; NOX = oxides of nitrogen; ROG = reactive organic gases.
- Screening levels include indirect and area source emissions. Emissions from engines (e.g., back-up generators) and industrial sources subject to Air District Rules and Regulations embedded in the land uses are not included in the screening estimates and must be added to the above land uses.
- Refer to Appendix D for support documentation.
- Source: Modeled by EDAW 2009.

3.2 COMMUNITY RISK AND HAZARD IMPACTS

Please refer to Chapter 5 for discussion of screening criteria for local community risk and hazard impacts.

3.3 CARBON MONOXIDE IMPACTS

This preliminary screening methodology provides the Lead Agency with a conservative indication of whether the implementation of the proposed project would result in CO emissions that exceed the **Thresholds of Significance** shown in Table 2-3.

The proposed project would result in a less-than-significant impact to localized CO concentrations if the following screening criteria is met:
Autumn Brook
1890 Risdon Road
Concord, Ca.

FEMA Panel, corresponding Summary of Discharges and accompanying flood profile for Ditch #2
Table 6 – Summary of Discharges

<table>
<thead>
<tr>
<th>Flooding Source and Location</th>
<th>Drainage Area (sq mi)</th>
<th>10-Percent Annual Chance</th>
<th>2-Percent Annual Chance</th>
<th>1-Percent Annual Chance</th>
<th>0.2-Percent Annual Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPIAN CREEK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximately 1,950 feet upstream of Appian Way</td>
<td>0.60</td>
<td>320</td>
<td>450</td>
<td>490</td>
<td>580</td>
</tr>
<tr>
<td>At Appian Way</td>
<td>0.86</td>
<td>430</td>
<td>600</td>
<td>660</td>
<td>780</td>
</tr>
<tr>
<td>At confluence with San Pablo Creek</td>
<td>0.98</td>
<td>450</td>
<td>640</td>
<td>710</td>
<td>840</td>
</tr>
<tr>
<td>ARROYO DEL HAMBRA CREEK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At John Muir Parkway</td>
<td>8.97</td>
<td>1,788(^1)</td>
<td>2,413(^1)</td>
<td>2,660(^1)</td>
<td>2,903(^1)</td>
</tr>
<tr>
<td>At Jose Lane</td>
<td>7.10</td>
<td>2,240</td>
<td>3,290</td>
<td>3,660</td>
<td>4,380</td>
</tr>
<tr>
<td>BROOKSIDE ROAD TRIBUTARY</td>
<td>0.95</td>
<td>2</td>
<td>2</td>
<td>925</td>
<td>2</td>
</tr>
<tr>
<td>CASCADE CREEK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At San Pablo Creek confluence</td>
<td>0.60</td>
<td>185</td>
<td>325</td>
<td>360</td>
<td>470</td>
</tr>
<tr>
<td>CLAYTON VALLEY DRAIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,135 feet upstream of Salvio Street</td>
<td>2.10</td>
<td>480</td>
<td>790</td>
<td>930</td>
<td>1,200</td>
</tr>
<tr>
<td>At confluence with Walnut Creek</td>
<td>4.40</td>
<td>1,200</td>
<td>1,800</td>
<td>2,100</td>
<td>2,400</td>
</tr>
<tr>
<td>CORLISS DRIVE TRIBUTARY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At confluence with Laguna Creek</td>
<td>0.40</td>
<td>160</td>
<td>250</td>
<td>280</td>
<td>300</td>
</tr>
<tr>
<td>DEER CREEK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At Marsh Creek confluence</td>
<td>6.40</td>
<td>170(^3)</td>
<td>880</td>
<td>1,200</td>
<td>1,800</td>
</tr>
<tr>
<td>11,320 feet upstream of confluence</td>
<td>5.43</td>
<td>2</td>
<td>2</td>
<td>571</td>
<td>2</td>
</tr>
<tr>
<td>14,100 feet upstream of confluence</td>
<td>4.88</td>
<td>2</td>
<td>2</td>
<td>317</td>
<td>2</td>
</tr>
<tr>
<td>DITCH NO. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At Bart Culvert</td>
<td>2.10</td>
<td>900</td>
<td>1,300</td>
<td>1,450</td>
<td>1,650</td>
</tr>
<tr>
<td>At confluence with Pine Creek</td>
<td>3.30</td>
<td>1,100</td>
<td>1,500</td>
<td>1,700</td>
<td>2,000</td>
</tr>
<tr>
<td>DONNER CREEK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At confluence with Mount Diablo Creek</td>
<td>2.90</td>
<td>845</td>
<td>1,250</td>
<td>1,390</td>
<td>1,680</td>
</tr>
<tr>
<td>DOW CHANNEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Increase in area with decrease in flow is result of spill
\(^2\)Data not computed
\(^3\)Flows reduced by reservoir routing
\(^4\)Peaks reduced due to bypassing and/or nonreturning overbank spills
October 14, 2014

Mr. Zheng Tan
1233 Pine Creek Way, Unit A
Concord, CA 94520

Subject: 1890 Risdon Road
Concord, California

CONSULTATION REGARDING EXISTING CANAL STABILITY

Dear Mr. Tan:

In accordance with your request, we have evaluated the existing slopes along a portion of the Contra Costa County Flood Control District (CCCFCD) canal adjacent to your project located at 1890 Risdon Road. We previously performed a subsurface geotechnical exploration at the site and presented the exploratory borings and results of that study in a report dated February 18, 2014.

Our scope of services for this evaluation included a recent reconnaissance of the site by an engineering geologist from our office, review of the findings of our exploratory borings on the site, review of historical aerial photographs of the site, and review of the latest proposed development plans for the project.

SITE RECONNAISSANCE

As noted above, a canal is located along the northeast side of the property as shown on Figure 1. The flow line of the canal is typically about 9 feet below the adjacent grades. The side slopes of the canal have a slope gradient of about 2:1 (horizontal:vertical). Where the canal crosses under Risdon Road and under David Avenue, existing concrete drop structures limit the potential for vertical and horizontal erosion of the canal. The canal banks are currently vegetated with grasses and scattered trees. At the approach to the drop structures, the existing slopes are protected by about 20 horizontal feet of grouted riprap for the full height of the bank, and it appears that some sections of the canal bank itself are underlain by riprap revetment. An unpaved 22-foot-wide service road (located within the CCCFCD easement) is situated along the entire southwest side of the canal from Risdon Road to David Avenue.

EXPLORATORY BORINGS

Boring 1-B1 was drilled in an area of existing fill located on the southwest side of the canal outside the CCCFCD easement. In Boring 1-B1, about 4 feet of fill was encountered over native soil and alluvium. Boring 1-B2 was drilled about 20 feet from the canal top of bank. Native soil and alluvium was encountered in Boring 1-B2 at the existing ground surface.

The conditions encountered in Borings 1-B1 and 1-B2 indicate that the adjacent canal was constructed in a cut configuration. The conditions encountered in the borings and the topography of the canal are depicted on the attached Geologic Cross Section A-A’, Figure 2.
AERIAL PHOTOGRAPHS

Historical aerial photographs of the site covering the time period from 1939 to 2012 were examined on Google Earth and HistoricAerials.com web sites. Based on this review, we observed that the subject canal was constructed sometime between 1958 and 1968 along an existing natural drainage swale that traversed the property. Numerous photographs taken after 1968 were examined and no indications of previous instability or erosion problems were evident on the canal banks in this area.

PROPOSED DEVELOPMENT

The latest plans for the project have been prepared by P/A Design Resources, dated October 8, 2014. The plans indicate that the existing 22-foot-wide service road will remain along the southwest side of the canal and further to the southwest, and the project improvements will include a bioswale and private lane to serve the proposed homes. The proposed improvements are depicted relative to the canal on the attached Geologic Cross Section A-A’. The proposed retaining wall for the bioswale shall be designed for a surcharge from heavy equipment that may work on the 22-foot-wide service road maintaining the canal.

CONCLUSIONS AND RECOMMENDATIONS

Based on the findings of this evaluation, the canal was constructed by an excavation into the native soils and alluvium. There is no indication of fill placement on the service road or the existence of a levee along the subject canal. Based on observation of current and historic conditions, we found no indications of canal slope instability or erosion problems. It appears that the canal has performed acceptably for over 50 years.

As previously recommended in our geotechnical report, all improvements associated with the project be set back a minimum of 15 feet from the top of canal bank. Current plans prepared by P/A Design Resources indicate all improvements are setback 22 feet from the top of the canal bank and therefore conform with this recommendation.

We are pleased to have been of service to you on this project and are prepared to consult further with you and your design team as the project progresses.

Sincerely,

ENGEIO Incorporated

Raymond P. Skinner, CEG

Macy Tong, GE

Attachment: Figures 1 and 2